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Abstract

The material point method (MPM) is an evolution of the particle in cell method where
Lagrangian particles or material points are used to discretize the volume of amaterial. The
particles carry properties such as mass, velocity, stress, and strain and move through an Eule-
rian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications
to the material point method are developed that allow the ssmulation of thin membranes,
compressible fluids, and their dynamic interactions. A single layer of material points through
the thickness is used to represent a membrane. The constitutive equation for the membraneis
applied in the local coordinate system of each material point. Validation problems are pre-
sented and numerical convergence is demonstrated. Fluid simulation is achieved by imple-
menting a constitutive equation for a compressible, viscous, Newtonian fluid and by solution
of the energy equation. The fluid formulation is validated by simulating a traveling shock
wave in acompressible fluid. Interactions of the fluid and membrane are handled naturally
with the method. The fluid and membrane communicate through the Eulerian grid on which
forces are calculated due to the fluid and membrane stress states. Validation problemsinclude
simulating a projectile impacting an inflated airbag.

In some impact simulations with the MPM, bodies may tend to “stick” together when
separating. Several algorithms are proposed and tested that allow bodies to separate from
each other after impact. In addition, several methods are investigated to determine the local
coordinate system of a membrane material point without relying upon connectivity data.
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CHAPTER 1. INTRODUCTION

There is an important class of problems involving fluid-structure interaction, as exemplified by
airbag deployment in automobiles, for which arobust numerical agorithm would be desirable. The
existing approaches are limited mainly due to the general problem of treating interfaces. Some of the
interface problems include determining the boundaries of the fluid and structure and applying the
correct conditions on one from the other. The material point method (MPM) developed for other
classes of problems appears to hold considerable promise for this class as well. The objective of this
research was to modify the MPM for fluid-membrane interaction problems and to investigate its

potential usefulness.

In the MPM, Lagrangian particles or points are used to discretize the volume of the fluid or solid.
These material points carry with them properties such as mass, velocity, stress, and elastic and plastic
strain. The points move through an Eulerian mesh on which governing equations are solved and

derivatives are defined.

The MPM has several advantages. Mesh distortion or entanglement is not a problem since the
Eulerian mesh is under user control. Thus, highly distorted configurations of material points can be
simulated whether it is gas flow or deformation of asolid. Since all properties are carried by the
material points, numerical dissipation through the fixed mesh is small. Interfaces and material
boundaries are defined by the location of the Lagrangian material points so that boundary reconstruc-
tion and mixed-cell calculations, that may be computationally intensive in a pure Eulerian method,
are not needed. The MPM has inherent in its formulation an automatic calculation of no-dlip contact.
Thus, for alarge class of problems no additional contact calculations are needed. Slip and friction
can be simulated with the addition of a contact algorithm.

The method is potentially attractive when considering fluid-structure interaction. The motion of
the fluid material points and solid material points are governed by the same equations. The difference
between fluid and solid pointsis only in the evaluation of the respective constitutive equations and

the additional solution of the energy equation for fluid points.

Chapter 2 reviews the three basic computational approaches consisting of the Eulerian,
Lagrangian, and Arbitrary Lagrangian-Eulerian (ALE) methods and provides a summary of current

literature. It is evident that one of the areas where the proposed method improves upon othersisin
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handling interfaces.

Chapter 3 summarizes and devel ops the material point method in the finite element framework.
The conservation equations for momentum, energy, and mass are discussed. Here, the framework is

laid for subsequent modifications to the method.

In Chapter 4 modifications to the MPM are proposed that enable fluids to be simulated. The
numerical algorithms for the fluid momentum, constitutive, and energy equations are developed and
validation problems are provided. Sod’s problem of a shock propagating through a compressible gas
issolved, and the results compare well with theory. A gas expansion problem is solved, and the results

are compared with those from another fluid dynamics code.

In Chapter 5, development of the membrane material point that allows simulation of springs,
strings, and membranesis discussed. A one-way constitutive equation is proposed to allow wrinkles
in amembrane; that is, amaterial point may accumulate compressive strain without compressive
stress. Thus, an approximation to asmall wrinkle is achieved without resolving the physical geometry
of the wrinkle which would require afine computational grid. Simulations of a spring, string, and
swinging pendulum demonstrate the method. Sequential mesh refinement for the pendulum problem

demonstrates convergence.

The proposed method for fluid-structure simulations is presented in Chapter 6. An arbitrarily-
shaped membrane filled with a viscous gas under pressure that is not initially in equilibrium is simu-
lated. Large oscillations in the membrane are eventually damped out, and the membrane assumes a
circular shape. The gas does not escape from the membrane, and the membrane (hoop) stresses are
consistent with the final pressure of the gas. Convergence is demonstrated in four consecutive simula
tions. A ssmulation of a pre-inflated airbag being penetrated by a probe is also smulated. The deflec-

tion of the probe into the bag agrees well with other simulations and experiment.

Chapter 7 presents various methods for determining the normal vectors to membrane points. The
normal vectors must be determined to eval uate the membrane constitutive equation. The connectivity
of material points can be used to find normal vectors, but a more general method is preferred. One

method is shown to be superior and is successful when used on a model problem.

A stability analysisfor linear elastic material pointsis presented in Chapter 8. A genera stability

analysis of the method is difficult because of the Lagrangian step and remap involved in asingle com-
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putational cycle. The complexity of the equationsis even greater if material points are allowed to
cross cell boundaries. Thus, asimplified one-dimensional analysisis presented that indicates the Cou-
rant-Friedrichs-Lewy (CFL) stability condition governs where the length scale is based on the mesh
and not the material point spacing (Courant et al., 1928). Thisis no surprise as numerical results have
consistently shown this to be the case. It should be noted that a stability analysis has not been con-
ducted for the fluid formulation or the fluid-structure interaction formulation. However, numerical

simulations have indeed shown that the CFL condition also governs the time step.

Section A.1 describes a solution to one of the problems discovered during the course of the
research. In some simulations where bodies impact there is a nonphysical sticking of the two bodies
when they should be moving away from one another. A description is given of the contact-release
algorithm whereby grid velocities from different bodies are compared to determine if they should be
in contact or not. The algorithm is successfully applied to two impacting bars and to a ball impacting

anet.

The result of thisresearch isasimple explicit algorithm based on the MPM for simulating mem-
branes, compressible fluids, and fluid-structure interaction. The potential usefulness of the algorithm
is demonstrated by solving awide variety of problems. In most cases the results of the demonstration
problems are compared to theory, experiment, or to another simulation, and the results from the MPM
consistently agree well with analytical solutions and numerical solutions based on alternative

approaches.
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CHAPTER 2. COMPUTATIONAL ASPECTS OF FLUID-STRUCTURE INTERACTION

Fluid-structure interaction isabroad class of problemswhere the combined states of afluid and a
solid need to be determined simultaneously. These problems are especially important when the struc-
tural responseisnon-trivia (e.g., not rigid) and, in turn, has an effect on the fluid. Some examples are
airflow around high-speed reentry vehicles, airflow around parachutes, fluid sloshing in a storage

tank, and airflow in an inflating airbag.

When computational power was limited, the fluid parts of the fluid-structure problem were often
solved with major simplifying assumptions for the structural part of the problem. Similarly, if the
structural aspect of the problem was considered to be dominant, simplifications were made for the
fluid behavior. However, today computers and methods have advanced to the point where the com-

bined problem may be solved, although thereis still much room for improvement.

If the structure part of the fluid-structure problem is a solid, the constitutive equation depends on
deformation which isusually small. The fluid, which may undergo large deformations, has a consti-
tutive equation that involves deformation rate and/or a constituent model such asincompressibility.

The boundary between the fluid and structure is where the complex interaction phenomena occur.

For an inviscid fluid the boundary condition on the fluid at the fluid-structure interface should be
one of free dlip. For viscous fluids the condition may be no dlip at the interface. However, the normal

component of traction in the fluid should always be the same as that in the structure.

For numerical solutions of fluid-structure problems, an additional complication occurs when the
solid has one small dimension, which leads to atime step restriction if the structure istreated as a
continuum or leads to the need for plate or shell theories and corresponding difference or finite ele-
ment schemes. For a fluid-membrane problem there are further problems. Since the structure has no

bending stiffness the deformations can be large even though the strains may be small.

2.1 Introduction to Eulerian, Lagrangian, and AL E Formulations

The Eulerian method uses a mesh fixed in space where the nodes represent the discretized spatial
variable. On the other hand, L agrangian methods use the location of material points at a previous
step as the spatial variable. Total Lagrangian methods use positions at a reference time, and numeri-
cal schemes based on this method also use a fixed mesh. However, updated L agrangian methods are

more commonly used where the location of a material point at the end of the last time step isrepre-
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sented by nodes of amesh.

In Eulerian formulations the governing equations are solved on the fixed grid, and material moves
through the mesh. In Lagrangian methods, the computational grid or mesh is attached to the material
being ssimulated. The Lagrangian mesh moves and distorts with the material.

Figure 1 illustrates these concepts with a simple example of a material loaded with pressure and
constrained on the right and bottom sides. In the Eulerian method (Fig. 1(a)) material is represented

by quantities defined at the grid nodes, such as mass. At some later time, ty, in the simulation, the

mass at the grid nodes has changed (convected) due to material deformation as governed by external
and internal forces, but the grid remains fixed in space. The changes in the sizes of the circlesindicate
the change in the amount of mass at the grid nodes. An attempt to describe the mass distribution is
made by showing grid masses associated with material boundaries designated with dashed lines. In
Fig. 1(b), which shows the L agrangian approach, the material is represented by the grid which distorts
with the material.
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Figure 1. Eulerian (a) and Lagrangian (b) Concepts

Figure 1 shows one disadvantage of the Eulerian method, which is the lack of definition of mate-
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rial boundaries. If amaterial boundary existsin one cell, then the mass at one grid node may be large,

while another may be small, and the actual material boundary is somewhere between the two nodes.

Another disadvantage of Eulerian methods has been the lack of ability to resolve materia inter-
faces when two or more materials are in the same computational cell. Also, because the grid is fixed,
history-dependent or path-dependent materials (e.g., viscoelastic fluids or plastic solids) have been

difficult to simulate.

In an Eulerian formulation, because the grid is fixed, a nonlinear convective acceleration term
must be included in the governing equations. This nonlinear term is generally expensive to handle
from acomputational perspective. To overcome this limitation some approaches split the Eulerian cal-

culation into separate Lagrangian and Eulerian (remap) steps.

The great advantage of Eulerian methods is the ability to simulate highly distorted fluid flow and
large deformations. Eulerian methods are not limited by mesh deformation. Also, free surfaces can be

created in an Eulerian method “automatically” whereas thisis more difficult in a Lagrangian code.

Lagrangian methods, however, do not have a nonlinear convective term as a part of the governing
equations. Thus, the computations are less complicated in general until the mesh gets so distorted that
remeshing is required. Lagrangian methods do not require special procedures to resolve material

interfaces, and history-dependent materials are simple to model.

Usually special features have to be implemented into both Lagrangian and Eulerian codes for sim-

ulating impact between materials.

A recent application of an Eulerian method was the simulation of impact of the Shoemaker-Levy
Comet on Jupiter with the code CTH (Deitz, 1995; Hertel, 1993). This code is used to simulate high
velocity impacts asillustrated in Fig. 2(a) where a copper ball penetrates a steel plate at avelocity of
14,760 ft/s (4,500 m/s). Note the numerous regions involving material failure with resulting free sur-

faces.

An example of a Lagrangian calculation done with PRONTO3D (Taylor, 1989) is shown in Fig.
2(b) where ashipping container impacts arigid target at 200 ft/s (76 m/s) (Slavin, 1994). Note the dis-
torted elements near the impact point at the bottom of the container. In this simulation, several contact

surfaces are defined to ssimulate sliding and contact between materials (Heinstein et a., 1993).

The arbitrary Lagrangian-Eulerian (ALE) method is formulated so that the mesh can either move
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(a) ball penetrating a plate,
solid lineisradiograph of
experiment (computational
grid not shown)

container
impacting
arigid surface

Figure 2. (a) An Eulerian and (b) A Lagrangian Impact Simulation
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Figure 3. ALE and Lagrangian Calculation of a Bar (Huerta, 1994)

with the material, remain fixed in space, or move at an arbitrary velocity. The mesh can be kept regu-
lar during the calculation if the proper mesh velocity is specified. Also, the mesh may follow or be
adapted to certain discontinuities (e.g., a shock) to improve accuracy or resolution. Of course, one of
the “tricks” of the method is to specify the “right” mesh velocity. Figure 3illustrates an ALE versusa
Lagrangian calculation of the necking that occursin a bar being pulled. Notice that the mesh is more
regular and, presumably, the results are more accurate in the highly deformed region for the ALE cal-
culation (Huerta, 1994).

2.2 Fluid-Structure Smulation with Euler-L agrange Coupling
One of the most obvious ways to solve a problem that involves both fluid and solid materialsisto
couple two existing codes - one for fluid-only simulation and one for solid-only simulation. This

method may take advantage of advanced features that exist in each of the separate codes.

McMaster (1984) describes coupling between fluid and solid dynamics codes for simulation of
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fluid-structure interaction. In one application the coupling is such that the structure applies a position
and velocity boundary condition to the fluid, and the fluid applies a pressure boundary condition to
the structure. Thisistypical of most coupling methods. The algorithm iterates until the boundary con-
ditions and incompressibility condition are satisfied. That is, the fluid pressure field and position of
the structure are corrected until the normal velocities of the fluid and structure are equal. Prior to the

iteration, the intersection of the structure with the Eulerian cells must be defined.

Figure 4 illustrates the coupling concept. On the left, velocity compatibility is symbolically repre-
sented showing the velocity vectors of the Lagrangian shell and the Euler grid nodes. The normal
velocities of the fluid and solid must be equal to prevent penetration of the fluid through the solid.
Thus, the velocity of the shell nodes must be mapped to the Euler grid nodesin away that accurately
represents the no penetration condition. The force compatibility part of Fig. 4 shows the forces
applied on the shell by thefluid. A value of pressure at appropriate Euler grid nodesis used along with
the information of where the shell intersects the Euler grid to determine a magnitude and direction of
force that should be applied to the shell. Pressures that may be used in this calculation are listed P;-

Pe-
Asamodel problem to illustrate the coupling, McMaster provided the smulation of a cylinder

Euleriangrid ~ Lagrangian shell

77 vacuum P vacuum
= —
& P2
o ] o i P3 P4 \.\
L’ f
, fluid P P
fluid 4 5 6
shell node velocity ——
fluid node velocity - force vector >
velocity compatibility force compatibility

Figure 4. Euler-Lagrange Coupling Concept
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subjected to mode 2 vibration while submerged in water.

In adifferent application, McMaster describes the coupling of a compressible explicit Eulerian
fluids code with DY NA. The coupling method is similar to that described above. It is noted that spe-
cia provisions are implemented to handle fluid advection when the structure is present in acell. Also,
massless marker particles can be used to monitor the flow field. A simulation of a sphere impacting

water shows good agreement with experimental data.

A similar coupling is described by Gross (1977) between two explicit codes. Several steps are
taken in the structural code for each step in the fluid code. Thisis called sub-cycling. Cylinders

impacting water are simulated.

MSC/DY TRAN is an explicit finite element program (Buijk, 1991, 1993; Florie, 1991) that has
been used to ssimulate gas and material dynamics of unfolding automobile airbags. The gas dynamics
portion of the simulation can be turned on or off. However, when the gas flow is simulated, the inter-
section of amembrane (airbag material) element and the Euler element is calculated, and the pressure
within the Euler element is distributed among the nodes of the membrane elements as forces. Buijk
terms this treatment as a general Euler-L agrange coupling because of the unlimited relative motion of
the Lagrangian membrane elements to the Eulerian elements. Thisisin contrast to ALE (Arbitrary
Lagrange-Euler) coupling where the two elements are connected and the motion of the Lagrangian
elementsislimited. Buijk reports that most of the cpu time for asimulation including gas dynamicsis
used to determine the intersection of the Lagrangian membrane elements and the Eulerian elements.

Thisis essentially a contact algorithm to determine contact between the gas and the membrane.

A simulation of the impact of an unfolding airbag with a plate shows favorable agreement with
experiment. By running simulations with and without the gas dynamics, Buijk concluded that the
momentum of the gas plays a significant role prior to full inflation of the bag. That is, an out-of-posi-
tion occupant who contacts the inflating airbag will have significant additional acceleration dueto the

gas momentum.

The PISCES 2DELK (Euler-L agrange Koupling) code provides coupling of aLagrangian shell
discretization with an Euler discretization for the fluid (gas) flow (Nieboer, 1990; de Coo, 1989;
Prasad, 1989). This code was the predecessor of the MSC/DY TRAN code mentioned above, and thus,

uses similar methods.

11
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Nieboer (1990) describes PISCES simulations where an axisymmetric model was used to show
the effect of arigid body impacting a sealed airbag. The model issimilar to that shown in Fig. 5. After
the impactor contacts the airbag, the gas flow within the airbag is calculated using the Euler grid. The
airbag is modeled using linear elastic membrane elements. Good agreement is observed between the

simulation results and the experiments.

Euler Grid

= (17x27)
support

airbag

spring HA/ impactor

Figure5. PISCES 2DELK Axisymmetric Model for Fluid-Structure I nteraction Simulation
(Nieboer 1990)

Lewis (1994) describes the coupling between NIKE3D, a solid dynamics code, with an ALE fluid
dynamics code. The motivation for this approach isto exploit the advanced features (e.g., constitutive
models) that may reside in each separate code. The schemeisiterative and implicit, and the time step
in the fluid and solid domain is the same. A model problem was solved where an elastic cylinder is
submerged in an inviscid, incompressible fluid. The fluid extends to a prescribed radial boundary. An
axisymmetric pressure pulse on the inside of the cylinder setsit into the fundamental breathing mode
of vibration. The predicted vibrational frequency compares well with the theoretical frequency. Other
problems involving an underwater explosion and bubble dynamics show reasonable agreement with

experimental data.

Ghattas (1994) describes a fluid-structure interaction method that uses an Eulerian fluid descrip-
tion and a Lagrangian structure description. The method was formulated specifically for fluid-struc-
ture interaction simulations and is not a coupling of two “separate” programs. A variational
formulation is used, and a continuous traction and velocity field is required at the fluid-structure inter-

face. The resulting set of nonlinear equations are solved with a Newton-like method. Ghattasillus-

12
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trates the method by calculating two-dimensional deformationsin elastic bodies due to a surrounding
flow field.

Bendiksen (1994) indicates aerodynamic stability calculations can be affected by the errors accu-
mulated when fluid-structure interaction is ssmulated by a “separate” sequential fluid and structure
calculations (integrations). Bendiksen treats the equations for the fluid and structure as one problem
by formulating the governing equations for both the fluid and structure in integral conservation-law

form based on the same Eulerian-Lagrangian description. Several flutter problems are solved.

2.3ALE Methodsfor Fluid-Structure Interaction

One of thefirst papers to describe the ALE method was by Hirt (1974). Hirt’s formulation
involved afinite difference framework with an implicit time integration algorithm. Applications were
for fluid dynamics simulations at all flow speeds. The computations to advance the solution one time
step are separated into three phases. The first is an explicit Lagrangian calculation, with the exception
that the mesh vertices do not move. The second is an iterative phase that adjusts the pressure gradient
forces to the advanced time level. This optional phase eliminates the Courant stability condition. The
mesh vertices are moved to their new Lagrangian positions after this second phase. The third phase,
also optional, moves the mesh to a new position. In the Lagrangian phase, if the mesh has some veloc-
ity other than the one obtained by moving the mesh to its new position, convective fluxes must be cal-
culated. Thisis often called rezoning. Hirt notes that the separation of the calculations into
Lagrangian and convection phases originated in the Particle-in-Cell method. Thisis also called an
Operator Split method and is described by Benson (1992, p. 325).

Donea (1977) describes the use of the finite element method for solving coupled hydrodynamics-
structures problems. Donea’s method is conceptually similar to ALE methods that were originally
based on finite differences. Here, the finite elements may move with the material, remain fixed, or
move at an arbitrary velocity. The motivation for this approach isthat it allows for a simple computer
program architecture, permits straightforward treatment of fluid-solid interfaces, and enables the use
of arbitrarily shaped elements for modeling both the fluid and solid. One fluid-structure problem is
solved with both the Lagrangian and Eulerian methods. In the Eulerian method, the elements that are
adjacent to the structure are prescribed to stay in contact with the structural elements, so that these

elements are actually Lagrangian. The results for the two methods are nearly identical.

13
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A more recent paper by Donea (1983) illustrates the use of the ALE finite element method in sim-
ulating a contained explosive detonation in water. Similar to that described above, fluid elements adja-
cent to structural elements are pure Lagrangian and stay attached to the structural elements. Donea
gives a detailed description of how the accelerations are determined for nodes shared by fluid and

structural elements that result in common normal velocities.

There are many other examples of ALE applicationsin the literature. Liu and Ma (1981) and
Huerta (1990) use an ALE finite element method to simulate fluid sloshing in atank. Nomura (1994)

also uses an ALE finite element method to investigate flow-induced vibrations of a cylinder.

2.4 Eulerian Methods for Fluid-Structure Interaction
Eulerian methods have been and still are popular for fluid dynamics simulations due to their abil-
ity to handle large distortions. There are many papers in the literature on Eulerian methods for fluid

dynamics, and many theoretical and practical problems have been solved with this method.

There are some problems traditionally associated with Eulerian methods. These problems are: (i)
handling multiple materialsin a cell, (ii) handling history-dependent materials, (iii) tracking material
interfaces, and (iv) handling impact or contact between materials. However, these problems are being
overcome with sophisticated advection and interface tracking algorithms. In Benson’s (1992) survey,
he states that most of the interface tracking algorithms use marker particles at surfaces or derive the

surface definitions from the volume fractions of the different materials.

A state-of-the-art code called CTH is atwo-step, second-order accurate Eulerian solution algo-
rithm used to solve multi-material problems involving large deformations and/or strong shocks (Her-
tel, 1993). Material strength isincluded in the solution. Material contact is not resolved or simulated
inaway that is possible with an ALE or Lagrangian code. The information available in a computa-
tional cell includes the amount of each material in the cell, so it is difficult to resolve boundaries and
enforce contact conditions. History-dependent materials (e.g., plasticity) can be modeled. History

variables are advected with a conservative, second-order accurate van Leer (1977) scheme.

No recent papers are found in the literature on using pure Eulerian methods for fluid-structure

interaction where the interface of the fluid and structure needs to be resolved as a part of the solution.

14
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2.5 Fluid-Membrane Interaction

A subset of fluid-structure problemsisthat of fluid-membrane interaction. Some practical exam-
plesinvolving fluid-membrane interaction are: (i) inflation of airbags, (ii) sailboat sails, (iii) flexible
fabric roofs for buildings, (iv) moving automobile belts, (v) textiles (fiber and fabric production), (vi)
paper manufacturing, (vii) VCR and other moving tape media, (viii) bands (such as bandsaws and

automatic transmissions), and (ix) pressure transducers.

Niemi et al. (1987) use the finite element method to strongly couple gas and membrane dynamics
to study natural frequencies of a membrane moving in air. In this case, the physical situation being
modeled is that of paper moving between two rolls (Fig. 6a). Standard finite element techniques are
used to obtain discrete equations of motion for the fluid and the membrane. The coupling is achieved
by enforcing equality of normal (to the membrane) accelerations for “wet” nodes on the membrane.

The resulting set of equations is used to calculate frequencies of vibration.

A variety of large-motion, fluid-membrane problems are solved by Han et al. (1987) using an iter-
ative method. The fluid is assumed to be inviscid and irrotational, and is simulated with a boundary
element method. The membrane is modeled using shell finite elements. The membrane and fluid ele-
ments are implemented in three-dimensional space. An analysis begins with a given membrane shape
as aboundary to the fluid. The flow analysisis performed with the boundary element method. With
the new fluid loads known, the finite el ement solution determines the position of the membrane. If the
new membrane position is within a specified tolerance of the old profile the cal culation continues to
the next time step. If not, then the boundary element solution is called again given the new membrane
position. Iterations continue until convergence is achieved. Good results are obtained for a preten-
sioned, pressure-loaded square membrane and a pressurized cylindrical membrane in crossflow (Fig.
6b).

Yamamoto et al. (1992) simulate steady two-dimensional flow past a flexible membrane using
finite difference techniques (Fig. 6¢). The fluid is governed by Navier-Stokes equationsin terms of a
vorticity-stream function. Coupling of the fluid with the membrane is done by enforcing zero normal
fluid velocity at the surface of the membrane and by applying forces to the membrane due to the fluid

pressure.

Smith (1995) has simulated incompressible, unsteady viscous flow over aflexible, linear elastic

membrane wing with an implicit finite difference method (Fig. 6d). The fluid imparts anormal and
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shear stress to the membrane. The boundary conditions at the membrane surface require the fluid
velocity to equal the membrane velocity. An iterative procedure is used to solve the coupled problem

until a predetermined convergence criterion is satisfied.

Other papersin the literature use methods similar to those described above to simulate cylindrical
pneumatic structures subjected to wind loading (Uemura, 1971), blood flow (Rast, 1994; Fig. 6e), and

membrane sensors (Lerch, 1991).

/
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Figure 6. Various Fluid-Membrane I nteraction SimulationsIn The Literature

2.6 Particle-In-Cell Methods

Harlow (1964) reported that the Particle-in-Cell (PIC) method was developed in 1955 at LosAla
mos National Laboratory for the solution of complicated fluid dynamics problems. It isacombination
of aLagrangian and an Eulerian method that naturally handles no-dlip interfaces between materials

and large slippage and distortions. The details of the code are discussed by Amsden (1966).
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In general, the idea of the PIC method is to solve the governing equation on an Eulerian grid
where derivatives can be conveniently defined. Information is transferred from the grid to Lagrangian
material particles via mapping functions. The material particles move or convect and carry with them
certain properties. Variations on the method can occur by changing the mapping method. That is, the
mapping functions themselves may be changed or the method of mapping may be changed. In Har-
low’s classical version of PIC, velocities were mapped from the grid to the particle. In aless dissipa
tive version called FLIP (FLuid-Implicit-Particle) (Brackbill, et al. 1986, 1988), material particle

velocities are only updated from the grid solution.
An outline of a FLIP-type algorithm is asfollows:
1.) Solve the governing equation to obtain acceleration at the grid nodes.
2.) Integrate the acceleration to obtain the velocity on the grid.
3.) Map the acceleration to the particles to update the vel ocity.
4.) Move the particles based on the velocity determined in step 2.
5.) Map particle quantities to the grid in preparation for the solution at the next time step,
6.) Determine velocity gradient, strains, and stresses at nodes (or vertices),
7.) Determine grid forces from stresses.

Sulsky and Brackbill (1991) use a method similar to Peskin’s (1977), but based on the PIC
method, to simulate suspended bodies moving in afluid. A force density term, F(x,t), is added to

equations for Stokes' flow for an incompressible fluid

—Op+pAu+F =0
O =0

(2.2)
where the gradient [0 and Laplaciand are taken with respect to current position, X is current posi-
tion, u isvelocity, p is pressure, and the force, F, is determined from the sum of internal and external
forces. The external forces may be those due to gravity or magnetic fields. The internal forces only

exist in the suspended body and are due to the strains within the body. The internal forces are deter-

mined from
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£'"(x,t) = O CE(x, t)(0d + (0d)") (2.2)
where E is amaterial modulus that is afunction of position becauseit is zero in the fluid regions, and
d isthe displacement field. Peskin’s method has also been used for flow where the accel eration terms

are significant (Peskin, 1995).

The basic ideas from the PIC or FLIP methods have been adapted recently to solid dynamics by
changing step (6) of the FLIP-type algorithm. These field variables are evaluated at materia points,
and the resulting approach is applied to impact problems with elastic and el astic-plastic constitutive
equations (Sulsky et al., 1993; Sulsky et a., 1994).

2.7 Immer sed Boundary M ethods
There have been several papers published on simulations where a moving boundary or interfaceis
immersed in afluid or other medium. The common thread to these methods is that they attempt to

describe the evolution of the entire system with a common governing equation.

Peskin (1977) studied blood flow through the heart. In his devel opment he attempted to make as
little distinction as possible between the fluid and nonfluid (heart muscle) regions. Peskin solved the
governing equations on an Eulerian grid. The governing Navier-Stokes equations are modified with a

force density term, F(x,t), which is nonzero only for the nonfluid regions

p%’+uD]t%=—Dp+un+F (2.3
where p isdensity, u isvelocity, p is pressure, and n is viscosity.

The heart valves are treated as L agrangian bars that can only support atensile or compressive
force, and that move within the Eulerian grid. The forcein abar (representing avalve) isafunction of
the relative displacement of its endpoints. The bars representing the heart muscle are apair of parallel
springs, one in series with an active “ contractile element” that causes the springs (muscle) to contract
in a prescribed manner. It isthe forces in these bars that are interpolated to the Eulerian grid to define
F(x,t). A more recent paper (Peskin and McQueen, 1995) describes three-dimensional simulations

using the immersed boundary method.
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2.8 Stability of Fluid-Structure Interaction For mulations
Some information was presented in the above sections regarding stability and time step limits.
However, it isfelt that thistopic warrants its own section as there are several papers where stability is

the main subject.

In general, explicit integration schemes lead to a condition on the time step for the calculations to
be stable, a situation called conditional stability. In contrast, some implicit schemes are uncondition-
ally stable and the time step can be larger than that of an explicit calculation. The time step for the
implicit calculation is determined by the accuracy needed in the solution. Implicit schemes, however,
require a system of equations to be solved simultaneously. In certain problems, these equations may
be nonlinear, which may increase the solution time. The hope isthat the increase in computation time
for each step on an implicit scheme can be offset by using significantly larger time steps than allowed

by stability constraints of an explicit scheme.

Stability of finite difference and finite element schemesfor fluid or solid simulations are well doc-
umented in the literature. Some new stability issues may arise when fluid and solid simulations are

combined.

Tu and Peskin (1992) provide a numerical investigation of stability with their immersed boundary
method. The immersed boundary method cal culates motion of a Lagrangian structure embedded in a
fluid whose governing equations (Stokes flow is assumed) are solved on aregular stationary grid. The
effect of the structure on the fluid is determined by interpolating forces from the structure to the grid.
The model problem used to examine stability is an elastic closed boundary (like a cylinder) immersed
in an incompressible fluid. The closed boundary is perturbed into the form of an ellipse, and then the

calculations demonstrate the boundary relaxing into a circular shape.

Tu and Peskin use three methods to cal culate the force from the immersed, closed boundary. They
are: explicit, approximate implicit, and implicit methods. The approximate implicit method estimates
the boundary configuration at the end of the time step to calculate the boundary forces. This has been
the method used in practice. The stability results are as expected. The most stable method isimplicit,
followed by approximate implicit, and, finally, explicit. The computational time per time stepis
ordered in reverse, which is also expected. It is stated that the implicit method is probably too expen-

sive for practical applications.
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The work of Neishlos et al. (1981, 1983) on explicit finite difference schemes for fluid-structure
simulations shows that the time step limit for the coupled problem may be more severe than that for
either the fluid or solid alone for some schemes. It is shown that the reduced limit can be avoided by

varying the scheme of differencing the governing equations.

Jones (1981) shows a similar result with Euler-Lagrange fluid-structure coupling. In a one-dimen-
siona spring-piston-fluid coupled problem he indicates that certain “injudicious choices’ of the cou-
pling formulation and discretization parameters can make an unconditionally stable Implicit
Continuous-fluid Eulerian (ICE) algorithm unstable. He shows this analytically by deriving a damp-
ing parameter, D, which has as one of itsvariables . For ) > 0 the current rather than the advanced
structural velocity values are used to update the position of the structure, which is called weak cou-
pling. In the expression for D, thisis destabilizing. For strong coupling ¢ = O, where advanced
velocities are used to move the structure, and the effect is stabilizing. Depending on particular param-
eters of the problem, such as mass of the piston, spring constant, tube length, coarseness of the dis-

cretization, etc., it ispossible for D to be negative, and thus result in an unstable algorithm.

Belytschko (1980) describes various methods for integrating the equations for fluid-structure
interaction. The following schemes for integrating the equations are discussed: (i) integrating both the
solid and fluid equations explicitly with the same and different time steps, (ii) integrating the solid
implicitly and fluid explicitly, and (iii) integrating both implicitly. The motivation for the mixed meth-
odsisthat asingle time step for afluid-structure simulation done purely explicitly may result in
unreasonable run times if the solid is stiff compared to the fluid. Also, purely implicit methods may
require too much core memory and too many iterations due to large fluid meshes. A detailed compar-
ison is not made between the methods, but several example problems are solved. The conclusionis

that the solution method should be picked according to the specific problem.

2.9 Summary and Opportunitiesfor Improvement in Current Approaches

One of the mgjor areas that can be improved upon is the handling of interfaces. Interfaces are the
contact points/surfaces between fluid and solids as well as between two or more solids or several flu-
ids. Pure Eulerian methodsin general have difficulty accurately simulating boundaries, interfaces, and

contact. Lagrangian codes must employ sophisticated contact algorithmsto detect and compensate for
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interfaces.

Most of the work in fluid-structure simulations uses coupled codes, including ALE schemes. With
coupling, there may be two separate codes that are coupled or asingle code that uses an Eulerian fluid
description and a Lagrangian solid description. Generaly, in ALE simulations the fluid description
tends more towards Eulerian and the solid towards Lagrangian. ALE codes still have to employ agen-
eral-purpose contact algorithm to handle generation of new contact surfaces. In severa published
ALE smulations, the solid mesh isinitially attached to the Eulerian fluid mesh.

In coupled codes, computational effort must be expended to determine the intersection of the
Lagrangian solid with the Eulerian grid. If the “right” mesh velocity is applied to Eulerian fluid ele-
mentsin an ALE simulation, some of this effort may be avoided. However, determining the optimum
mesh velocity in general isnot trivial. In addition, interface equations that prescribe continuity of nor-
mal velocity may have to be solved (ref Fig. 4).

The material point method offers potential advantages if applied to fluid-structure interaction
problems. One of these advantages stems from the fact that the material point method uses both an
Eulerian and Lagrangian mesh description. There is better resolution of material boundaries and
mixed cellsand anatural way of handling history-dependent materials as compared to purely Eulerian
methods. Highly distorted flow can be simulated without causing mesh distortion, which isacommon
problem in updated L agrangian methods. A no slip contact algorithm is automatic to the method. That
is, it comes at no additional computational expense.

The material point method can use acommon momentum equation for both the compressible fluid
and the solid. Thefluid is to be treated no differently than the solid except in the constitutive routine
to determine stress as a function of strain rate. Thus, the enforcement of potentially nonlinear bound-
ary conditions between the fluid and solid is not an issue. The method will automatically enforce con-
tinuity of normal velocities between the fluid and the solid.

The material point method developed for history-dependent materials is described in Chapter 3.
Modifications to the MPM to handle compressible, inviscid or viscous fluids and membranes are dis-

cussed in subsequent chapters.
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CHAPTER 3. THE MATERIAL POINT METHOD

The MPM evolved from a particle-in-cell (PIC) method called FLIP (FLuid-Implicit-Particle)
(Brackbill and Ruppel, 1986), which itself is an improved version of Harlow’s (1964) origina PIC
method. Several references were made in Section 2.6 to descriptions of the PIC, FLIP, and MPM
methods. In the extension of FLIP to history-dependent materials, strain and stress are now defined
on the material points as opposed to the cell centers. Thisis the significant difference between FLIP
and the MPM.

To begin the description of the MPM, we start with the equation for conservation of linear

momentum given by

(pa®) M4 b = pa. (3.1)
The specific stress, 0°, isdefined as 6/ p and is symmetric. The constitutive equation is given, for
the moment, in rate form by
6" = To¢ (3.2)
where the strain rate is the symmetric part of the velocity gradient

£ = %[(vm) + (v . (33)
The gradient operator ( )0 iswith respect to the current configuration. The specific body forceisb,
and the acceleration isa. The strain rate, €, is defined to be the symmetric part of the gradient of

velocity, v, while T®isthe tangent modulus tensor relating specific stress rate and strain rate.

To obtain weak forms of the governing equations, suppose equations 3.1 through 3.3 are multi-

plied by the weighting functions, W, pw, and pw* , iInturn, and an integration over the current con-
figuration, Q, is performed. After the use of the divergence theorem for the first equation (3.1), the

resulting set of equationsis

z[p[w Ca+a> WO dv = J;pW [de+g[2w (tds (3.4)

z[pv\/:[c';s—Ts:;e] dv =0 (3.5)
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J;pw*:%s—%[(vm) +(vO)'Bdv = 0 (3.6)
0 0

Here, T denotes the prescribed part of the traction on the surface 0Q . Differentials of volume and
surface are denoted by dv and ds, respectively.

Now approximate the variables in equations 3.4, 3.5, and 3.6 over a discrete domain using shape
or basisfunctions. The objective isto obtain a set of equations that can be solved on adiscrete domain
to approximate the solution to the continuous form of the governing equations (3.1 through 3.3).

First, consider amesh of material points with Qp denoting a subdomain of Lagrangian materia
points. Associated with each subdomain is a material point Xg in the reference configuration and a
material point Xp in the current configuration. At t=0 the configurations are Qg asshowninFig. 7.
The choice of precisely where the material point islocated in aparticular subdomain is arbitrary.

At alater timethe origina configurations deform into configurations Qp . The deformation is arbi-
trary, and the material points are tracked with their reference vectors X p- The boundary material
points and interior points are treated the same.

Over the material points, define piecewise constant basis functions U, such that U, =1 for al

material pointson Qp; otherwise U, = 0. It follows that Ui(Xj) = 6” . Suppose these basis func-

tions are used to represent the functions w, w , @° and € in the weak form of equations 3.5 and 3.6.

For example,
N
c° = > oU, e= Y gU, (3.7)
p=1

where og and €, are the time-dependent stress and strain variables which are taken to be constant

over Qp.

Dirac delta functions are used as basis functions for the mass density:
N
p = z MO[X =Xl (3.8)
p=1

where M, is the mass of particle p.

Then, with the argument that the generalized variablesw,, and w; are arbitrary, equations 3.5 and 3.6

p
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Figure 7. Mesh of Lagrangian Material Pointsand Their Subdomains

become:
6, = T(X,):g, (3.9)
and
£ = S[(vO) + (vO)"] (3.10)
2 X,
in which the subscript, X, in the expression for the strain rate indicates that the function in the square

bracketsis evaluated at the material point. In other words, the stress and strain rate are evaluated at
those material points which will be tracked as part of the computational procedure. Thisis the princi-
pal difference between the MPM and other approaches such as the finite element method and the orig-
inal FLIP algorithm. In many finite element codes, stress and strain rates are determined at element

centers or at Gauss points. The original FLIP algorithm for fluids applies constitutive equations ele-
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ment-by-element to compute the stress at element centers. A similar approach has also been used for
linear elastic solids where there is no history dependence in the constitutive equations. By contrast,
the MPM makes greater use of the material pointsto maintain current values of history variables and
material parameters; and constitutive equations are evaluated at materia points rather than at element
centers.

Now, define a mesh over the spatial computational domain, and let x define position in this
domain. The grid nodes in the computational domain are labeled x;. This spatial mesh can be thought
of as conventional finite elements and will be used in addition to the mesh of material points. Figure 8
illustrates a mesh of material points overlaid on the Eulerian computational mesh with spatial nodes

X;. Suppose these elements are used to form nodal basis functions N;(x) associated with spatial

t=0

Figure 8. Mesh of Lagrangian Material Points Overlaid on the Computational Mesh
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points x; withi=1, ..., n. The remaining variablesW, v and a must be continuous at |east in the limit as

the spatial mesh size goes to zero. The conventional finite el ement representations for the continuous

variables are:
W= S WiNi(x) (3.11)
i=1
vV = Z Vi (t)N;(x) (3.12)
i=1
a= z a (t)N;(x) (3.13)

i=1
inwhichW., v, and a; denote the nodal vectors for the respective functions. Introduce the mapping

matrix, [S], whose components, S ., are values of the nodal basis functions at the current locations of

pi’

the material points. Also define the set of gradient vectors, Gpis which represent the gradient of each
basis function at the current locations of the material points. The components of these matrices are

Spi = Ni(X,) and Gyi = N - (3.14)

Consider the weak form of the equation of motion given as equation 3.4. With the use of equations

3.8, and 3.11 through 3.14, the first and second terms in the equation become:

n N
T
zl;pW Cadv = Z W;my; a; where m; = Z M SipSy; (3.15)
i, J =1 p =1
n _ _ N
S int int S
K{po :WOdv = z W, [F; where Fo=- z Gi,M 0, (3.16)
i=1 p=1

Theterm m, j denotes acomponent of the mass matrix associated with the computational grid, and

Fi " istheinternal force vector associated with nodei. Nodal vectors for the body force field, b,,and

the surface traction are defined as a natural consequence of the volume and surface integralsinvolving

applied forces:
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n N

T
Z[pW [hdv = Z W, b where b, = Z SipMb,, (3.17)
i=1 p=1
n
Z[W (rdv = H W, 1 where T = JNdes (3.18)
i=1 Q

Alternatively, since the body force and surface traction are explicitly given, the conventional finite

element form can be used in which these functions are evaluated at the grid nodes. The external force

ext

vector, F;”, is obtained from the body force and surface traction in a consistent manner. The compo-

nents of W, are arbitrary except for those points where components of the displacement are pre-

scribed. With the understanding that the constraints on the displacement field are invoked, the weak

form of the equation of motion yields

% mya = K" +FX i = 1,0 (3.19)
j=1
The set of equations given by 3.9, 3.10 and 3.19 are similar in form to those obtained by conven-
tional finite element schemes. For example, the internal and external force vectors associated with
nodes are developed by sweeping over elements at each time step. The components of physical vec-
tors are arranged sequentially to form a vector of scalar components. The constitutive equation sub-

routines are also traditional.

Equation 3.19 isto be solved at discrete times, tK. After the acceleration is obtained at time level k,

the grid node velocity is advanced over the time interval At = *r_f g ng this acceleration. A
simple explicit integration gives

~k+1

V= Ve atal (3.20)

Thetilde on \7:( *1 indicates that these are temporary grid velocities that will be replaced later by

mapping from material points.

After equation 3.19 is solved for grid acceleration, the material point velocities, positions, strains,
and stresses are updated to reflect this new solution. This part of the solution procedure assumes an
updated Lagrangian frame. That is, the grid has moved in this time increment At with each node hav-

ing avelocity as defined in equation 3.20. Figure 9 illustrates this concept.
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k+1

o+

Figure 9. Material Point Convection

The new material point positions, determined by moving them in the computed velocity field

given by equation 3.12, are

X"t = X5+ At Z IN(X) (3.21)

p
i=1

and since the grid uses isoparametric elements the shape function values at the new time level are the
same as the previous time level. The velocity field in which the material points move is single valued
so that unphysical interpenetration of two materials does not occur.

The material point velocities are also updated according to

n
k+1 k k k
% = v, +At z a N;(Xp) - (3.22)

p
i=1

The strain increment at material pointsis updated using the new grid velocity values and discrete gra-

dient as

_ At k+1 k ~k+1,T0

where G are defined in equation 3.14. With the updated material point velocities now considered

known, “convected” nodal quantities v (note lack of tilde) are obtained using aleast squares

weighting of material point velocities
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rnVk+1
P p

k+1

Ni(X;

n
k+1 k+1
)3 my v = )3 ). (3.24)
j=1 p=1
Next we shall consider the conservation of mass. The mass of each materia point is constant in
the MPM. Thus, conservation of massis satisfied if the mapping of mass from the material pointsto
the grid is conservative. The grid massis given in terms of the material point mass (from equation

3.15) as
N T
m; = ¥ MSipSy - (3.25)
p=1

It can be shown in general that the sum of

all entriesof m;; equals the sum of M, which

computational ()
_ T _ cell with four P
functions being unity. For example, consider a  grid nodes

is due to the sum over grid points of the shape

single material point in acell asshownin Fig.

10. The 4x4 mass matrix is given by 1 2

Figure10. A Material Point in a
Computational Cell

SuMpSi SuM S, 5, M S5 S$1M Sy,
SlZM psll SlZM pslz SlZM p813 SlZM p814 )
Sl3M psll S13M pslz SlSM p513 S13M psl4
_Sl4M pSll 814'\/I pslz S].4M psl3 814'\/I pSl4_

3
I
<

KRR
Dototob

[311 Si2 Si3 514} = (3.26)

4
If the rows are summed to obtain the diagonal form, and the common term z S,; isfactored from
i=1

each diagonal element, the expression simplifiesto

syM, 0 0o 0| [syM; 0 0 0 |
4
0 S,M, 0 0 M, 0 0
>m = 3 Sy S2M SMp (3.27)
- A 0 0 spM, o 0 0 SgM, 0
0 0 0 s,M | 0O 0 0 SM,
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4
whereit is seen that the sum of all four diagonal terms equals M, since z S; = 1.Ingenerd
i=1

z my; =m = Z Z M pSiTpSpj = z M pSiTp (3.28)
J ] P p
and

.Zmi = Z%Mpsfp = %Mp. (3.29)

Therefore, the grid massis equal to the material point mass. In practice the diagonal form of the mass
matrix isused in equation 3.19 to avoid inverting the mass matrix (or solving a set of equations simul-
taneously); thisis common practice in explicit finite element schemes used for structural dynamics
simulations.

Thefinal conservation law considered is conservation of energy. For ssmulation of solid dynamics,
the current formulation of the MPM isisothermal. That is, the energy equation is not solved. How-
ever, the use of an equation of state for solids that may depend on temperature is not precluded and
could be implemented if desired.

The MPM computational algorithm is summarized as follows:

1) initialize materia point locations, velocities, strains, and stresses,

2) map momentum, mass, and internal forcesto the grid,

3) solve the momentum equation on the grid,

4) update material point locations based on grid velocity and update their velocities,

5) obtain convected grid velocities,

6) determine new velocity gradients and strains and stresses at the material points,

7) regrid,

8) goto 2.
Momentum is used in step 4 to prevent numerical problems due to division in some cases by a small
grid mass value. Grid massis determined by mapping material point masses to the grid with the shape
functions. Thus, the small grid mass is due to the small value(s) of shape functions. When momentum
is used, the numerator and denominator of the material point equations are balanced by the shape
function value. That is, the numerator and denominator both contain a multiplication by the shape
function, and numerical problems are avoided.

The equations below summarize the algorithm for the first time step for alinear elastic materia in
one dimension. Time levels are denoted by superscripts; “0” isthefirst time step, and “L1” isthefirst

Lagrangian step. The equations marked as“*” and “**” below are the implementation of the momen-
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tum formulation; note the shape function N; (xtl) in the numerator of these equations and massin

the denominator.

0

m. = z MpNi(xg)
p

2) Map material point mass and momentum to the grid: 6 0
Vi m;

ZMp ION,(x

mv—v)/Aat = 0
3) Solve the momentum equation on the grid: o L1
let P = MV,
L1_ .0 0 L1, , L1
Vp =Vt ZAtfi N;i(Xp )/ m;
4) Update material point velocities and locations: !

L1 0 L1, , 0
Xp = X+ ZAtpiNi(xIO )/ mi **
|

5) Obtain convected grid velocities: \”/iLl = Z M pVI[_)lNi (xFL)l)/ m,L1
P

6) Determine velocity gradients, strains and stresses at material points where the strain increments,

L1
Ae

o are based on the symmetric part of the velocity gradient, E isYoung's modulus, and otl isthe

De; Atz chva
new stress: (note: thisisfor one dimension)

cp = EAep
7) Regrid: The grid can be regenerated as specified by the user. In thiswork the same grid is used
throughout the computations to ssmplify the algorithm.
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CHAPTER 4. THE MPM FOR FLUIDS AND VALIDATION OF THE FLUID
FORMULATION

Here we give the specific constitutive equation and energy equation used to simulate problems
involving compressible fluids. The general development of the momentum equation in Section 3 con-

tinues to hold except that the stress tensor for afluid point (as opposed to a solid point) is given as
L. 2.

where [ is shear viscosity, and p is pressure which is usually determined from an equation-of-state.
Equation 4.1 assumes the Stokes condition A = —(2/3)u where A isbulk viscosity, and as aresullt,
the static pressure (spherical component of stress) is equal to the thermodynamic pressure. Due to the
presence of the delta function, only the diagonal terms in the stress tensor contain €k and pressure
terms. That is, when i#j, j =

Equation 4.1 is applied point-by-point. The strain rates for a material point are given in two

dimensions by

ou du

£,00 oy 4.2)
ov ov
ox oy

and are approximated with the discrete gradient operator as

. 1 Uk k+1 k k+1TD
€, = é %Gpl +(GpI i) E 4.3

”MZ

The equation of state implemented isfor an ideal gas where pressureis related to density and
internal energy by

p=(y-1)pi (4.4)
where i is specific internal energy, and y isthe ratio of specific heats. Equation 4.4 is applied point-
by-point.

There are several methods of determining material point density for use in calculating pressurein
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equation 4.4. Thefirst is cell density where all material pointsin acell are assigned the cell density.
Thatis

% my/ Ve and P, = P forpUc (4.5)

where mp is the mass of material point p, and V., isthe volume of cell c. Quadratic interpolation

determines the cell density as

p—ctp

pe=ym $2/v, (4.6)
p

where Sf:i) is aquadratic interpolation function whose support in one-dimension spans one cell to the

left and right of the cell containing material point p (ref Appendix 3.2, page 174). Material point den-
sity is determined the same as in equation 4.5. The continuity equation can aso be used to update

each material point’s density as

k+1 - pp
e T e AT ),)

(4.7)

where (O [V) b isthe divergence of velocity evaluated at the material point.

The equation of state (4.4) is dependent upon internal energy as well as density. Thus, the energy
equation must be solved for each fluid point. Conservation of energy requires that

d _ ..
pa = O€ (4.8)
wherei isthe specific internal energy, @ isthe symmetric stress tensor defined in equation equation

(4.1), and € isthe strain rate. Using equations 4.1 and 4.2 this expression can be expanded (for two-
dimensional Cartesian system with x and y coordinates) in terms of velocity and its derivatives as
U E@VD 0,020 _ Pu , v
Pt = 2l * gy o F5HO PO+« 3 (*9)
where U is shear viscosity, p is pressure, and u and v are the x and y components of velocity. This

equation is solved using the velocity derivatives that are also used to calculate material point strains.

Once the derivatives are calculated it is straight-forward to update the energy according to equation
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4.9. The energy update for afluid point is

! k By ox)

k+1
K+l _ = j +( —t ) D@LD B)VDD+D 2 D(D B/) —p(D D,)_,_“[@U aVD
o [ iy " py10" 030 }

(4.10)

which is calculated for each fluid material point every time step.

Itiswell known that most numerical simulations of compressible-fluid shocks provide more accu-
rate results if sometype of artificial viscosity isused at the shock front. The artificial viscosity imple-
mented in the MPM is similar to that described by Wilkins (1980). An additional term, g, is added to

the material point pressure under shock conditions as

q=( c? g)p)N\D[c +-E£—Ev—|—} (4.11)
max 1" max|0 G4 '
where
00 v O0r<0
D=0 (4.12)
0o O0/>0
and crznax is the maximum sound speed in the fluid, g is ageometric constant proportional to the mesh

Size, A isan artificial bulk modulus, p isdensity, and c; and ¢, are constants. Variable D defined in

eguation 4.12 forces the artificial viscosity, g, to be zero unless the material point isin compression.
The MPM computational algorithm with the modifications for fluid simulation is summarized as
follows:

1) initialize materia point locations, velocities, strains, and stresses,

2) map momentum, mass, and internal forcesto the grid,

3) solve the momentum equation on the grid,

4) update material point locations based on grid velocity and update their velocities,

5) obtain convected grid velocities,

6) determine new velocity gradients and strains and stresses at the material points; if the material
point isfluid then (i) apply the fluid constitutive equation and (ii) update the fluid point’s
energy,

7) regrid,

8) goto 2.
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4.1 Simulation of Shock Propagation in a Fluid (Sod’s Problem)

The objective of the simulation is to test the implementation of the MPM fluid formulation with a
problem that has an analytical solution to determineif it isaviable method for future fluid-structure
interaction simulations. The MPM results for pressure, density, velocity, and energy can be compared
to their theoretical values.

Sod (1978) investigated finite difference schemes for simulation of a shock propagating through
fluids. His model problem consists of a shock tube where a diaphragm separates two regions which
have different densities and pressures. Initially the regions have zero velocity. At time t=0, the dia-
phragm is broken. Figure 11 illustrates the initial conditions of the problem. The shock strength is
defined as the ratio of p,/p;. For this problem the shock strength is approximately 3.0, which gives a
shock speed of about 1.75 (Liepman, 1957). The shock is allowed to travel adistance of 0.25, which it
should do in 0.143 seconds.

This simulation is done with the formulations previously described. Thisis a one-dimensional

problem, however, it is solved with the MPM in two-dimensions, and the solution variables are con-

Ps=1 l
\
density,=1 J
| density;=0.125
{
us=0 \ u;=0
|
)
P4
t>0
Y
Xo

Figure 11. Sod’s Fluid Shock Propagation Problem
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stant with respect to they (vertical) direction.
Theinitial set-up for thesimulationis shownin Fig. 12. The square grid used is 100 x 1 with acell

dimension of 0.01, and nine materia points areinitially placed in each cell.

0.01

Figure 12. Initial material point Positionsfor the MPM Simulation of Sod’s Problem

It was observed during the first attempts at using the MPM for simulation of Sod's problem that
the results appeared noisy. It was noted that in FL1P some smoothing of the data is accomplished
using higher order interpolation. Thus, several methods of data smoothing were investigated in the
MPM to improve the solution to Sod’s problem. The main contributor to the noise seemed to be the
material point density calculation. Figure 13 shows the density at cell centers for the three methods
described previoudly (page 33), with the solid line being the theoretical value. The plot marked cell
density isaresult of calculating the density of acell and assigning all material pointsin that cell the
same density. The plot marked quadratic interpolation smooths the densities over multiple cells, and
the plot marked continuity equation uses the continuity equation to update each material point’s den-
Sity.

It isobvious that either the quadratic interpolation or the continuity equation improves the results
significantly over the cell density method. The resultsfor the continuity and quadratic calculations are
very similar. When corresponding data pointsin the two plots are subtracted, the maximum difference
isless than 0.005 which is small compared to density values ranging between 0.125 and 1.0.

The results of the MPM simulations using quadratic density calculations are shown in Figure 14
with circles marking each data point, and the theoretical values are shown with a solid black line. In
Fig. 14(a), top, the simulation is performed without artificial viscosity, and the bottom figure shows

how the artificial viscosity smooths the oscillations at the shock front. All data are calcul ated and pl ot-
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] (@ @ @@ ] - @@
0.9 cell density 0.9 continuity egn
0.8 0.8
0.7 0.7
E iael E
7 ool it 0ol
0.5 NI & 9°7
S 0.4 ! S 0.4
0.3 0.3
0.2- 0.2
0.1 0.1
0:\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\ o:\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 0 0.10203040506070809 1
position position
14 .
] quadratic
0.9 _ .
E interpolation
0.8
0.7
> 0.6
-H 1
% 0.5
T 0.4
0.3
0.2-
0.1
O7\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\

0 010203040506070809 1
position
Figure 13. Comparison of Density Calculationsin Sod’s Problem
ted at grid vertices except density which is at cell centers.

The results show reasonable agreement with theory. A qualitative comparison of this method with
the twelve methods compared in Sod’s paper indicates that the results here are better than the worst
methods but not as accurate as the best methods. Since the objective of thiswork isto investigate
fluid-structure interaction, no attempt was made to optimize the MPM for simulation of compressible
fluids. The results were accurate enough to show the viability of using the MPM for simulating fluid-

structure interaction.
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Figure 14. Results of Sod’s Problem Simulation with the M PM
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4.2 Gas Expansion

This simulation was run solely as another test of the MPM fluid formulation. The physical prob-
lem consists of allowing an initially cylindrical body of gas of radius 0.38 to expand into a vacuum.
The MPM simulation is compared to the same simulation run implicitly and explicitly with FLIP.

Figure 15 shows the problem set up which was run with 1/4 symmetry conditions on the x and y

axes. The gasis considered to be inviscid.

vacuum

0.38

- gaswith initial pressure=100

0.38

Figure 15. Gas Expansion Problem

The mesh size used is 0.025 x 0.025 with nine material points per cell. Figure 16 shows the calcu-
lated material point positions for the three simulations at t=0.005. The materia points are overlaid on
the 20 x 20 grid.

The MPM simulation most closely agrees with the implicit FLIP simulation. The scattering and
non-physical bunching of material pointsin the explicit FLIP calculation is attributed to the difficul -
tiesthat thisformulation has with the large pressure gradient at the edge of the expanding gas. Figures
17 and 18 show the results for pressure and specific internal energy. The MPM shows reasonable

agreement with the implicit FLIP calculation.

4.3 Chapter 4 Summary

Simulations have been performed with model fluid problems with the standard MPM formul ation
subject to certain fluid-specific modifications for density and shock effects. The results compare well
with finite-difference methods and with the implicit FLIP version. Existing references show that the

MPM is aviable method for solid continua. This chapter shows that the same basic formulation is



Chapter 4 - The MPM For Fluids and Validation of the Fluid Formulation

equally suitable for both solid and fluid continua.

L . Ce===1 | | FLIP explicit

= FLIF, Inplicit (&= 005)

0025 005 0075 04 0425 015 0475 02 0225 025 0275 03 0325 035 037 04 0425 045

FLIP implicit| °

|
007528

0,025

m PIFI {t=00501)

T T T T T T T T T T
04 . 0025 005 0075 01 0135 015 017 02 0235 025 0275 03 0325 035 0375 04 0425 045
=

MPM

0025 005 0075 01 0125 015 075 02 0285 025 027 03 0325 035 035 04 0425 045

Figure 16. Gas Expansion Results from the MPM and FLIP-Material Point Positions
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Figure 18. Gas Expansion Specific Internal Energy from the MPM and FLIP
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CHAPTER 5. THE MPM FOR MEMBRANES AND VALIDATION OF THE MEMBRANE
FORMULATION

A membraneis athin-walled structure that has stiffness only in the plane tangent to the structure
and ideally no stiffness in bending. The stress components and traction, t (vector of units force per
unit area), through the thickness of a membrane are constant. Figure 19 shows an arbitrarily shaped

membrane supporting an external force F. On the right is shown a slice of the membrane in the x-y

& /

FA/ \F \9

Z y /
y

t

X

Figure 19. Three-Dimensional Representation of a Membrane (left) and Section View

plane of width dsinclined at angle 6. The traction on the edges of the membrane does not vary
through the thickness, and the traction acts in the plane of the membrane or tangent to the membrane,
in this case oriented at angle O to the x-y plane.

There are no physical structures that exhibit perfectly ideal membrane behavior. However, there
are many examples of materials that can be approximated using membrane theory. Some exampl es of
these materials are thin-walled metallic structures, thin-walled el astomeric materials such as balloons
or diaphragms, paper, most fabrics, and many types of biological entities such as the walls of cells or
simple organisms. Strings and thin wire can be considered a one-dimensional membrane.

A string or wire can only support a tangent stress which is due to atangent strain. The strainsin
the other two perpendicular directions are such that the stresses in these directions are zero. Thisisa
uniaxial stress formulation. A membrane surface is similar except that stresses exist only in the plane
of the surface, i.e. astate of plane stressis assumed. The out-of-plane strain components must be
adjusted to provide the plane stress formulation. Furthermore, in either case, the tangent stress does

not vary through the thickness.
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FH

(@) (b) (©

surface

Figure 20. (a) Pointsin MPM Simulation, (b) Physical Representation of Membrane
and its L ocal Coordinate System and (c) Per spective View of Membrane Surface

Theinitial question concerned how to implement the MPM for membrane problems. Several vari-
ations of multiple material points through the thickness were investigated. Here we show that a partic-
ularly simple version of only asingle layer of material pointsis quite adequate. One of the key points
isto determine the strains in the local normal-tangential coordinate system and adjust them to be con-
sistent with the membrane assumptions.

Figures 20(a) and 20(b) illustrate a configuration of material pointsthat might represent astring or
membrane. Figure 20(a) shows the material pointsin the computational grid. Figure 20(b) shows the
interpretation of the string or membrane (dashed line) represented by the material points and the local
tangential-normal (1'-3") coordinate system at a representative material point. If auniaxial stressfor-
mulation is used, the string in Fig. 20(b) has stress only in the tangential (1') direction. If aplane
stress formulation is used, this same arrangement of material points may also represent a membrane
as shown in Fig. 20(c). Here, the stressisin the 1'-2' surface. The implementation of the string and

membrane formulations is described in the following sections.

5.1 Uniaxial Stress Formulation for a Spring or String

This section describes the formul ation of a method for simulation of an isotropic elastic spring
(bar) or string.

The strain rate is defined by the symmetric part of the velocity gradient as
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£ = %(VD+(VD)T) (5.1)

where v isthe velocity of material point p. The total calculated material point strain at time level k+1

iSE = ei( + EAt where si( isthetotal tangent strain from the previous time step. These strains are not
those used to determine the material point stress, and, thus, use of the tilde. The components of strains

€ in the tangential-normal (1'-3") coordinate system are calculated. To be consistent with the physics
of astring, the 3' and 2' (into the page in Fig. 20) strains are adjusted so that the only stressisin the
tangential (1') direction. The tangent strain increment is given by
Ag, = (tEO)AL (5.2
wheret is the unit tangent vector directed along the length or surface of the string. The total tangent
strainis
k+1

gy = Aet+s't( : (5.3)

Expanding equation 5.3, the updated tangential strain component is

s'f' = Asll(cose)2 + Aszz(sine)2 + 2Ag,,c080siN6 + sf (5.4)

and the tangent stressis

ot = Eelt? (5.5)

where E isYoung's modulus. For uniaxia stress the other strains are
€y = €3 = —VE; . (5.6)

In practice, the strainsin the primed (local) coordinate system (equations 5.2 and 5.6) areinput into a

matrix multiplication routine to determine the stresses as follows

oy €q I £y ]
Oa € —VE,
1 =[El| ®| =[E] 1 (5.7)
02- 82- —Vsl.
1013 €13 L 0]

where the elasticity matrix, [E] , is
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(1-v) v Y 0
_ E v (1-v) v 0
E] = 5.8
LE] (1+v)(1-2v)| v (1-v) © &9
0 0 0 (1-2v)
After smplification equation 5.7 reduces to
— -— B 2 N
Oz | _ E val.—(l—v)(val.)—vzsl. - |0 (5.9)
o (1+v)(1-2v) 5 ol '
2 Ve, —v e, —(1-v)(ve,)
1 1 1
013, 0 0

After the tangent stressis calculated, these components of stress and strain are transformed back to

the global x-y coordinate system to compute the global x and y forces.

5.2 The One-Way Constitutive Equation

An addition can be made to the formulation that enables a material point to accumulate negative
strain without causing acompressive stress. The ideaisto simulate awrinkle, which can be thought to
occur when astring isin compression, without having to resolve the buckling/bending of the mem-
brane. This enables a more realistic flexible string smulation at low cost. The addition to the method

isto have Young's modulus zero for negative tangent strains as shown in Fig. 21.

Ey

E

81-

Figure 21. One-Way Constitutive Form to Simulate Wrinklesin a String

5.3 Computational Algorithm

The computational algorithm (as compared to that on page 31) now has steps 7 and 8 added for
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the membrane, and if the “wrinkle” or one-way constitutive model isbeing used step 7(ii) isfollowed.
The algorithm now is:

1) initialize materia point locations, velocities, strains, and stresses,

2) map momentum, mass, and internal forcesto the grid,

3) solve the momentum equation on the grid,

4) update material point locations based on grid velocity,

5) obtain convected grid velocities,

6) determine new velocity gradients and strains and stresses at the materia points,

7) if the materia point is a membrane, determine the tangent vector, rotate total material point
strains into the tangent plane, apply the uniaxial or plane stress constitutive model, for either (i)
tensile-compressive membranes or (ii) one-way membranes (wrinkle algorithm),

8) rotate the stresses back to the global system for evaluation of internal forces,

9) regrid,

10) goto 2.

5.4 Other Considerations

5.4.1 Resolving the Membrane Forceson a Cartesian Grid

One may ask the question, “ Does this even have a chance at working?’ 1t's a good question when
you realize that the membrane forces should be tangent to the membrane in the material point mesh
and also on the Cartesian Eulerian mesh, or least the resultant interpolated back to the material points

should be. The concept isillustrated in Fig. 22 which shows a line of material points representing a

./F 4

F >

Figure 22. Material Points Representing a Membrane Oriented Obliquely to the Grid

membrane oriented at an arbitrary angle, a, to the horizontal. The picture begs the question, will the
mapping of the divergence of the material point stressto the grid result in material point accelerations

in adirection tangent to the membrane? One can imagine that if a small enough grid and enough
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material points were used that this would be true, but it may not be efficient since the time step is gov-
erned by the size of a computational cell. If larger cells are used, what happens when the membrane
has curvature inside a single computational cell? The problems solved in this and other sectionsindi-

cate the MPM membrane formulation does indeed work, and at reasonable grid resolutions.

5.4.2 Rotating Strains

In aprior implementation of step 7 in the computational algorithm of Section 5.3, page 47, only
the strain increments were rotated into the plane of the membrane. This was later determined to be
incorrect. For large changesin the tangent plane of the membrane during a simulation thisresulted in
accumulation of stresses that were not tangent to the membrane. Thus, the rotation of these stresses
back to the global x-y system could result in forces inconsistent with the membrane orientation. The
correct implementation keeps track of the total membrane strains each time step to determine the tan-
gent stress which when rotated back to the x-y coordinate system is consistent with the membrane ori-

entation.

5.4.3 NoisesWhen Material Points Change Cells

Another problem was found when using a small number of material points per cell. In the MPM
algorithm the internal force at agrid node is determined by taking the divergence of the stress of each
material point that contributes to the grid node. Now consider a 1-D problem where there are only a
few material points per cell and one crosses a cell boundary. Since the shape functions are linear, the
derivatives of the shape functions which are used to form the divergence are piecewise constant over
the elements. The contribution to internal force at agrid node from the material point that just crossed
acell boundary will change sign when the material point crosses the cell boundary. This causes noise
in the simulation. In most simulations, the noise is not detectable when examining output. However,
in some cases the noise in the material point’s velocity may be of the same order as the material
point’s velocity. This can happen in simulating oscillating problems when a material point’s velocity
isvery small, say at the apex of an oscillation when the velocity goes through zero to change direc-
tions. Section A.2, page 171, contains an example to demonstrate this problem.

With this problem noted, several corrections were investigated. One type of solution was aimed at
smoothing the stresses. An algorithm to use a cell-centered stress to calculate the internal forces
instead of using the stress of each material point was somewhat successful. The addition of more

material points also was successful because the noise is overwhelmed by the contribution of internal



Chapter 5 - The MPM for Membranes and Validation of the Membrane Formulation

forces by other material points. In any event, it was decided not to concentrate on solving this prob-
lem at this time since the problem had been identified and “workarounds’ were established. Thereis
currently research being conducted using a conjugate gradient method to solve the MPM equations

implicitly, and this may have the best potential for a permanent solution to the noise problem.

5.4.4 Setting the M ass of the Membrane Points

The existing algorithm for setting material point massis cell-based and has been used to initialize
masses for material points representing solids. The material points are assigned a fraction of the vol-
ume associated with each cell because these materia points areinitialy distributed in aregular pat-
tern in the cells. Figures 23(a) and (b) show the physical solid material and the MPM discretization.
The shaded areas represent the volume, Q. associated with each material point which inthiscaseis
one-quarter of the cell volume because there areinitially four material points per cell. In general, the
membrane material points have no ordered relationship with the grid as shown in Figs. 23(c) and (d).

Thus, the masses of these material points should be initialized in a different manner.

S
(@) (©)
As
)
° ° ° k\_‘ Q
b) = J i (d)

Figure 23. Solid: (a) Physical Representation and (b) MPM Representation and Mem-
brane: (c) Physical Representation (d) MPM Representation

If sisthetotal length of the membrane, f)o is the mass per unit area of the membrane material,

and N, isthe total number of membrane material points, the mass of a membrane material point can

besetasmp = sf)O/Nm.Thequantity As, where As = s/N,,, isused to associate a length of the
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membrane with each material point. Typically, As isafraction of the smallest cell dimension. Frac-
tions of one-third to one-tenth have been used in simulations. It is essential that the membrane mate-

rial points not become separated by more than one cell or the membrane will essentially be “ broken.”

The effective thickness of the membrane is accounted for in f)o :

The user must beware that if the grid width is different from the membrane thickness then the
membrane force will be distributed over alarger area. One can imagine cases where choosing the grid
size much larger than the membrane thickness may have unphysical results. This does not seem to
have that much of an effect in the cases reported here. The airbag simulationsin Section 6.3 useagrid
size of 20 mm and a membrane thickness of 0.5 mm, and the results appear physical and show reason-

able agreement with experiment.

5.4.5 Muultiple Pointsthrough the Membrane Thickness

Some work was done in the area of using multiple material points through the thickness of the
membrane. This concept is motivated by the idea that you may want to distribute the membrane force
over more than one cell width. Thisideawas quickly abandoned for the reasons outlined bel ow.

Membranes are usually thin, so having multiple materia points through the thickness means that
the material points have to be very close to one another. To resolve the membrane force over more
than one cell width means that the grid in the area of the membrane has to be very small which leads
to extremely small time steps. Also, there must be some rel ationship between the material points
through the thickness so that the stress components can be modified to obtain constant stress through
the thickness. This requirement leads to the need for connectivity data that can result in a very com-
plicated algorithm.

5.5 Spring-Mass System Simulation
Asalfirst step in validating the membrane formulation, the MPM is used to simulate an oscillating

mass on a spring. This problem is simple and has awell defined analytical solution.

5.5.1 Spring-M ass Problem Description
The Spring-Mass problem isillustrated in Fig. 24. A rigid mass s attached to amasslessrigid
spring of unstretched length L and spring constant k which is connected to a stationary wall. All ele-

ments lie in the x-y plane. An acceleration due to gravity, g, acts on the system.
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|
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yT :
........................... unstretched position
A
X m TC)//l/z static equilibrium position
y

Figure 24. |dealized Spring-Mass System

If position y is measured from the static equilibrium position, the governing differential equation
of thissystemis

2
oy,
ot?

y=0 (5.10)

Si=

The solution to equation 5.10 is

y(t) = yocosoot+}£sinoot (5.11)

wherew = J% isthe natural frequency, and y, istheinitial velocity. Note that the period of oscilla-

tion, T,isgivenby T = %ﬂ

5.5.2 MPM Spring-MassVibration Simulation Results

The spring-mass problem is simulated with the MPM method using ten membrane material
points. The simulation is approximate because the spring is modeled with non-rigid elastic material
pointsthat have massin contrast with the theoretical problem which has amasslessrigid spring. How-
ever, the mass of these material pointsisvery small compared to the mass m. Theinitial position of
the material points and the computational grid for the ssmulation are shown in Fig. 25.

The heavy material point in the simulation has a mass of 3.33 which is 10,000 times the mass of
the other material points. The equivalent spring constant, k, of the system is AE/L where Aiisthe
cross-sectional area of the spring?, E isYoung's modulus, and L is the length of the string. For this
simulation, A=0.1, E=1.0e6, g=-250, and L=0.3 which is the distance between the top and bottom
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Figure 25. Spring-Mass Vibration Simulation - I nitial Positions

material points.

The deflection of the “heavy” material point at the end of the spring isillustrated in Fig. 26 (top).
Also plotted in this figure is the deflection of the mass of the equivalent theoretical system whichis
calculated using the above parameters and equation 5.11. The theoretical kinetic energy as afunction

of time can be determined by differentiating equation 5.11 to obtain velocity (KE=mv?/2), and the

potential energy of the spring is afunction of the displacement and spring constant (PE:kx2/2). The
potential energy due to gravity (mgh) is not included. The time history of energy in the MPM simula-
tion is shown along with the theoretical calculationsin Fig. 26 (bottom).

1. In this context, the spring can be thought of as a bar.
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Figure 26. Time History of Mass Displacement (top) and Energy (bottom)
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5.6 String-M ass System With Initial Slack

The spring-mass system discussed in the previous section is modified to be a string-mass with ini-
tial slack. The physical problem being smulated isillustrated in Fig. 27 along with the MPM repre-
sentation. Material points4-9 are given aninitial negative strain. With the one-way constitutive model
there is no force generated by the material points until the material point has a positive tangent strain

(intension).

T M pointsinitialized
y L . _—With negative strain
T l Kk B in the y-direction
X 17 :
" 16 [+ = ooxo ]
(@) (b)

Figure 27. String-Masswith Initial Slack: (a) Physical and (b) MPM Representations

The results are presented in Figures 28 and 29. Figure 28 shows the material point positions at
various times. Note that at least one material point is crossing a cell boundary during the oscillation.
Figure 29(top) shows the displacement of the bottom material point, and the lower plot is the energy

history. This figure warrants some discussion.
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Figure 28. Material Point Positions at Various Times
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Figure 29. Displacement and Energy Resultsfor the String-Mass Simulation

For t<0.013 the massisin freefall, and the slack is being taken out of the material pointsinitial-
ized with negative strain. At about t=0.013 the slack is taken up, the string pulls on the mass, and the
mass begins to slow down. From here until about t=0.023 the string acts as a spring in tension. Note
that the displacement during thistimeis about 0.01 which is twice that of the mass-spring in Section
5.5 (see Fig. 26, page 53). The mass displaces more here due to its nonzero initia velocity when the

string forces begins acting on the mass. At about t=0.023 the string isin compression generating no
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resistance force, and the mass begins free flight up until it reachesits apex at about t=0.0375. From

here the cycle begins again.

5.7 Pendulum Simulation

The pendulum simulation uses the uniaxia stress membrane formulation. This problem demon-
strates that the forces due to material point membrane stresses can be adequately resolved on asguare
Cartesian computation grid. Also, convergence toward an updated L agrangian finite element solution

is demonstrated.

5.7.1 Pendulum Problem Description
The pendulum problem isillustrated in Fig. 30. A massis attached to a string of length L whichis
AN

Figure 30. Pendulum Problem Set-Up

connected to a stationary wall. All elements lie in the x-y plane. The string isinitially inclined at an

angle 6, from vertical. A field force due to gravity, g, acts on the system. Table 1 summarizesthe

problem parameters.

Table 1: Pendulum Simulation Parameters

[tem | Value Item Vaue

L 0.73 E 1x108

m 3.3 p 0.1
Y 0.0
S 19.8° t 0.1
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5.7.2 MPM Pendulum Simulation Results

The pendulum problem is simulated with the MPM and membrane material points. For these sim-
ulations, the wrinkle algorithm or one-way constitutive equation described in Section 5.2 is used.
Four simulations with different degrees of mesh refinement are presented. An additional simulation
performed with an explicit finite element method (FEM) using bar elements is used for comparison
purposes. The FEM code used is documented by York (1990).

The initial position of the material points and the computational domain for each simulation is
shown in Fig. 31. The edge length of a square computational cell isgiven by A. In each simulation,
the material point at the end of the string is given amass equal to 3.3. Figures 32 through 35 illustrate
the position of the material points at various timesin the simulations which are carried out for about
one and one-half oscillations. The execution time for the simulation with A=0.1 on a Macintosh Pow-
erPC 9500 (120 MHz 604 processor) is about 17 minutes and on a|BM-compatible machine with a
Pentium Il 233 MHz processor is about 9.5 minutes. Note that no attempt has been made to improve
the run speed of the code asiit is essentially aresearch code at thistime.

Figure 36 shows plots of the FEM simulation. The points (nodes) in Fig. 36 are connected to
emphasize this cal culation was done with bar elements.

Figure 37 compares the simulations for the angle theta. In the ssimulations, the angle thetais
defined by the angle made by a straight line joining the first and last material points. The MPM simu-
lations agree reasonably well with the explicit FEM simulation, and convergence toward the FEM
simulation is observed. Asthe simulation isrefined, the length of the string and direction of stressesin
the string are more accurately resolved on the computational grid. The material points stay aligned
better as the simulation is refined. The reduced amplitude of oscillations (seen in Figure 37) in the
MPM results when compared with the FEM results indicates numerical dissipation. However, the dis-

sipation is decreasing with mesh refinement.
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5.7.3 MPM Pendulum Simulation Results - Without Wrinkle Algorithm

If the wrinkle algorithm is not used as described in Section 5.1, the results are similar, but in some
cases appear dightly nonphysical. Thisiswhy the convergence study is presented using the wrinkle
algorithm. The position of the material points at various times for a simulation without the wrinkle
algorithmisillustrated in Fig. 38, page 66.

Without the wrinkle algorithm the alignment of material pointsis not as good (Fig. 38). One pos-
sible explanation of why this misalignment occurs liesin the fact that as the pendulum swingsit also
oscillates due to the spring-like effect of the string. The oscillations “ up” may cause some material
points to go into compression. The material points cannot support compression in this configuration

so a phenomenon similar to buckling may occur which tends to misalign the material points.

5.8 Plane Stress

The plane stress formulation is similar to uniaxial stress, except that other conditions on the
strains are enforced. In this case, the strain in the 3' direction is set so that the stressin thisdirection is
zero. Also, aplane strain assumption in the 2' direction dictates that the strain in this direction be zero,

but the stressis nonzero. Figure 39 illustrates a small material element in a state of plane stress. These

0,.#20,€,#0

0;=0,e520  /_
1 % 4,;// \%v 0,%20, €, =0
3I //

2!
surface

Figure 39. Plane Stress Assumptions

plane stress assumptions are

€3 = Ve /(1-V) and €y = 0. (5.12)

The strains in the primed (local) coordinate system are input into a matrix multiplication routine to

determine the stresses as follows
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01 & €,
03' — [ E] s3' — [ E] -V 81-/(1 — V) (513)
0, €y 0

013 €13 L 0 i

Oy (1-v) v v 0 &
Oy | _ E v (1-v) v 0 -ve/(1-v)
= 5.14
o (1+v)(1-2v)| v (1-v) 0 0 G19
013 0 0 0 (1-2v)|| 0 |
which simplifies to
(oY el.(l—v)—vzsl./(l—v) Eel.(l—vz)
Oz | _ E VE —VEy _ 0
- = : (5.15)
1+v)(1-2v
Oz (L+v)( ) Ve —v2e./ (1-V) Eeyv(1-V7)
013 0 0

In thissimplified formulation, thereisno shear inthe 1'-3' or 1'-2' directions. In general thisis not

true for the 1'-2' plane.

5.9 Ball and Net Simulation

A hypothetical problem of aball impacting a stationary net was used to test the membrane plane
stress formulation. The problem set-up is shown in Fig. 40. The constitutive model for the ball is
plane strain and that of the net is membrane plane stress.! The material properties used arelisted in
Table 2.

1. Since plane strain is assumed, the simulation is one of a solid cylinder impacting a membrane.
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Y/ /7774

AN\
Figure 40. Ball and Net

Table 2: Parametersfor the Ball and Net Simulation

Parameter Ball Value Net Value
Density 1.0 0.5
Young's Modulus | 1 x 10* 1x10%
Poisson’s Ratio 0.3 0.0
Initial Velocity 1.0 0.0

Intuitively, one knows that the ball will impact the net; the net will displace; and the ball will
release from the net to the left with avelocity smaller than itsinitial impact velocity. It was these
common-sense features of this problem that were being tested.

With the addition of a contact-release algorithm as described in Section A.1.1, page 154, the pre-
dicted positions of the ball and net seem plausible. The criterialisted in equation 9.9 of the appendix
were used to control the contact and release of the ball.

Thematerial point positionsare shownin Fig. 41. At about t=2.8 the ball releases from the net and
moves at constant velocity to the left. Thisis more evident in Fig. 42 where the histories of the center

of mass velocity and position of the ball and net are plotted. Here it is seen that the ball’s velocity is
constant at about -0.7 when t = 2.8, and the slope of the ball’s position curve is constant indicating

constant velocity. The net continues to oscillate after the ball releases.
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5.10 Chapter 5 Summary

Simulations of membranes have been performed with the material point method. A relatively sim-
ple modification to the material point constitutive equation allows springs, strings, and membranes to
be simulated. The spring-mass-with-slack system and ball and net simulations give qualitatively cor-
rect results. The results of the other simulations compare favorably to theory and to other simulations.
This chapter shows that the MPM is aviable method for simulation of membranes. The finite element
method may be more efficient for ssmulating some of the problems discussed here. However, the
strength of this approach is treating more complicated fluid-structure interaction efficiently. The next

chapter combines the fluid and membrane formulations and discusses fluid-structure interaction.
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CHAPTER 6. FLUID-STRUCTURE INTERACTION WITH THE MPM

It is proposed that fluid-structure interaction problems be simulated with the MPM. Theideais
straight forward in that the coupled problem is set up as any other type of MPM simulation. The dif-
ference now being that some material points are designated membrane material points and others are
designated fluid material points.

The effect of the fluid on the structure and vice-versawill be determined on the grid when the
eguations of motion are solved at each grid node. The coupling of the fluid and solid isindirect in the
sense that the pressure from a fluid material point is not directly applied to the neighboring structure
material points. Instead, the forces from fluid and solid material points are calculated together at grid

nodes where the divergence of the material point stressis summed. Figure 43 illustrates the idea of

summation of the grid forces, fg, from the fluid and membrane stresses, o; and o, and the respective

material point volumes, V¢ , and V,

membrane material point
o / om.
¥
-— 00 © O (©) OO

o © o o ©
oO o
fluid material point

C

(0]

g
(@)
P o ¢
grid node o

fo0 Z(D TS\ ;(D [0,V

Figure 43. Fluid-Structure Coupling

The net effect of the force summation is that the structure forces cause accel erations of neighbor-
ing fluid and structure material points, and pressure and fluid shear stresses cause accel erations of
neighboring structure and fluid material points. The accelerations are imposed on the materia points
asvelocities in the calculations.

Since Lagrangian material points are used for both the fluid and the structure and since the two are

indirectly coupled, the time-consuming cal culations involved in defining the interface and applying
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the correct boundary conditions can be avoided. Recall in Section 2.2 that one author reported calcu-
lating the intersection of the Lagrangian elements with the Euler fluid elements took the mgjority of
the cpu time in his fluid-structure interaction calculation. Also, mixed cells are handled naturally as

the material points carry material properties with them.

6.1 Piston-Container Problem

The piston-container problem is arelatively smple one-dimensional problem. The objective of
running this simulation was to test the fluid-structure interaction algorithm on asimple scale using a

test problem with a known solution.

6.1.1 Problem Description

Anillustration of the piston-container fluid-structure problem is shown in Fig. 44. A massless
spring of constant K and length L is attached to a piston. The piston can move without friction to com-
press or expand acompressible fluid of density p and bulk modulus 3. A similar fluid-structure prob-

lem is presented by Olson (1983).The objective is to compare the theoretical frequency of vibration
with that from an MPM simulation.

K,L

fluid density = p
bulk modulus = 3

Figure 44. Piston-Container Problem

The fluid is assumed to be compressible, inviscid, and adiabatic. The continuity, energy, and con-

stitutive relations combine to give the relationship between pressure and displacement as follows:

= B0 V) (6.1)
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where U is displacement and B isthe isentropic bulk modulus. The analytical expression for the nat-

ural frequency, w, of vibration of the mass satisfies the equation

w—/[K + pwcAcot(wL/c)]/m = 0 (6.2
where c isthe wave speed ./B/ p, and A is the piston cross-sectional area.

6.1.2 Piston-Container Simulation Results

The parameters used in the MPM simulation are as follows: L=20, A=1.0, K=100, p =0.0001,

B = 1.58x10° , and mvariable. Compared with Olson’s paper, the area here is reduced by afactor of

5, and 3 isincreased by afactor of 5. The density in the smulation is 1e-4 compared with 9.35e-5
used in Olson’s problem. The problem is set up with the MPM simulation asillustrated in Fig. 45. A
line of code was added to the equation of state subroutine in the MPM program to determine the pres-
sure asindicated in equation 6.1. Also, the heavy material point in the spring is“hardwired” to have a
mass of 100 times that of other spring material points, which is an approximation of the massless
spring.

To determine the frequency of vibration, the heavy material point representing the piston is given

asmall initial velocity, and the position of this material point is monitored.

1

O|O|0|I0OI00IO|OIO|O|I0I0I0|O|OO|0|0|/0|0|0
0 A

012345678 91011121314151617 1819 2021 222324252627 28 29 30 31 32 33 34 35 36 37 38 39 40

O0o0oo0ooonooooooaooooo

“heavy” mat’l point [ spring (membrane) point
© fluid point

Figure 45. Piston-Container MPM Simulation Set-up

Thefirst solution of equation 6.2 gives the fundamental mode of vibration. Table 3 lists the theo-
retical natural frequency and period for a given mass along with the period observed in the MPM sim-
ulation. The observed periods are very close to the theoretical ones. Figure 46 shows the time history
of displacement of the mass. The vertical dashed linesin the plot represent the theoretical periods of

vibration.
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The period of vibration with amass of 1.0 in avacuum (no fluid) is 0.628 s, so the effect of the

Table 3:; Piston-Container Periods of Vibration

Mass. m Theoretical | Theoretica | MPM Simulation
' w (rad/s) period (S) period (S)
0.1 886.2 0.00709 0.0071
1.0 281.2 0.02234 0.022

fluid in the case of m=1 is to increase the frequency of vibration by afactor of nearly 30.

=1
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Figure 46. Mass (Piston) Deflection in the Piston-Container Simulations
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6.2 M embrane Expansion

The dog-bone-to-cylinder membrane expansion simulation isan arbitrary problem (not seeninthe
literature) that tests several aspects of fluid-structure interaction. The initial conditions for the prob-
lem are shown in Fig. 47, and the problem parameters are listed in Table 4. A computational cell size

of 0.1 isshown in the figure; atotal of four different cell sizes were used.

y=1 6 = 90
AN
cell sizeof 0.1 membrane
for reference
X AT
{¥\ x=05 86=0
fluid
Pi=1OO

==

Figure 47. Initial Conditionsfor the Dog-bone Membrane Expansion Simulation

Table 4: Fluid and Membrane Properties

. Membrane

Fluid Property Value Property Value
density 1.0 density 0.5
viscosity, 1 0.1 Young's modulus | 1x10°
initial specificinter- | oo Poisson'sratio, v | 0.3
nal energy, i
ratio of specific wrinkle algo-
heats, y 14 rithm on
artificial viscosity off
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The problem consists of a gas under internal pressure which expands filling a cavity that isini-
tially dog-bone shaped. A membrane forms the cavity and confines the gas. At early times, the mem-
brane oscillates due to unbalanced forces. Since the fluid is given a nonzero viscosity coefficient, the
membrane oscillations are damped until a steady state condition is reached.

There are several areas where this problem can be compared to theory. Some of these are as fol-
lows:

» the gas should not escape from the membrane,

» the equilibrium shape of the membrane should be circular,

» the stress in the membrane should be consistent with the internal pressure.

Table 5 lists some of the results of the four simulations that were performed. The simulations are
more refined going from 1 to 4 asindicated by the cell or mesh size in the second column. Square ele-
ments are used. The last two columns show the final pressure and radius of the membrane at 0 and 90
degrees (see Fig. 47 for 0 and 90 degree locations). Thefinal radii of the membrane show convergence
with mesh refinement, and the final pressures do also, but convergence is not as rapid as for the radii.
The higher final pressures of the more refined simulations are consistent with less energy dissipation

observed in the plots of the total energy.

Table 5: Membrane Expansion Simulation Parameters and Results

e Final Final
Simulation | €8 | No-MatlPoints | Total | ooy | 1nternal
Size | Fluid® Membrane® | Mass N .
90°) Pressure
1 0.4 64 56 0.600 1.08/1.13 33.4
2 0.2 64 100 0.584 | 1.335/1.334 24.9
3 0.1 64 200 0.583 | 1.388/1.387 27.0
4 0.05 64 400 0.584 | 1.394/1.396 29.0

a. Material points per cell.
b. Total number of membrane material points.
c. Calculated by averaging the final pressure at interior grid points.

Table 6 is a comparison of the theoretical hoop stress, calculated with the final radius and pres-
sure, with the hoop stress observed in the simulations. There is nominally aten percent difference

between the theoretical value and the simulation value. On source of error arises from the fact that the
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forces are calculated at grid nodes, and the radius used for the hoop stress calculation in the first col-

umn is based on material point locations.

Table 6: Comparison of Hoop Stress

Simulation S|t_|ro£a .S?r(‘g' Diff:;/roence
Simulation
1 369 394 6.75
2 332 372 11.95
3 375 417 11.31
4 405 447 10.49

a. Hoop stress, prit, is calculated using the final radius and pressure
from Table 5 with thickness equal to 0.1.

Figures 48 through 55 illustrate the detailed results of the four membrane expansion simulations.
For each simulation, the material point positions during theinitial oscillations are shown along with

the shape at steady state. Following thisisaplot of the radii at zero and 90 degrees and the energy.

6.2.1 Simulation 1

Simulation 1 isthe coarsest simulation with an element size of 0.4. Figure 48 shows the material
point locations at increasing times. The simulation is so coarse that the folds or wrinkles in the mem-
brane can not be pulled out to a circular shape at equilibrium. However, it can be seen that gas does
not escape the membrane and that the membrane shape does move toward a circular shape although
the circular shapeis not totally achieved. Figure 49 shows the time history plots of radii and energy.
Theradii plot shows the noncircular shape at equilibrium, and the oscillations appear quite noisy. The
energy plot shows that about 3.6 percent of the energy islost due to numerical dissipation.

Some trends to look for in the upcoming plots of solutions with mesh refinement are: (i) the final
shape of the membrane becomes more circular, (ii) the oscillations are smoother, and (iii) thereisless

energy dissipation.

6.2.2 Simulation 2

Figure 50 shows the material point locations at increasing times for the simulation where the
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Figure 48. Material Point Position Plotsfor Simulation 1
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Figure 49. Radii and Energy for Membrane Expansion Simulation 1
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mesh sizeisone-half of smulation 1, or Ax = 0.2. The results appear more physically intuitive than
the previous one. However, one might question the bulges in the membrane at t=0.1 as being non-
physical. In general, the membrane oscillations are reasonable, and the final shape is approximately
circular. Figure 51 showsthat the radii are approximately equal at zero and 90 degrees, and the energy
plot shows that about 3.4 percent of the energy islost due to dissipation.

6.2.3 Simulation 3

Figure 52 shows the material point locations at increasing times for a mesh size of 0.1. The for-
mat of thisfigureis dightly different from that of previous material point plots because a different
post-processing technique was required due to the large number of material points. Note aso that the
bulges at t=0.1 do not appear in this simulation which suggests that they may have been due to poor
resolution in the previous simulation. Also, the smoother curves in the membrane are probably attrib-
utable to higher resolution.

Figure 53 shows the radii and energy plots.The oscillations in the membrane are less noisy than

the previous ones, and the change in energy is only about 1.2 percent.

6.2.4 Simulation 4

Figure 54 shows the material point locations at increasing times for the simulation with the high-
est resolution (mesh size 0.05). The trends in changes between this simulation and the previous one
are similar to changes observed between simulations 2 and 3. The membrane lines are smoother, but
the general shape is approximately the same asin Simulation 3. The same applies to the radii and
energy as seen in Fig. 55. The oscillations in the radii are smoother and the change in energy isless
than one percent.

The pressure and membrane stress contours are shown in Fig. 56 for quadrant | (0 to 90°). Both
pressure and stress are interpolated to grid points from material points. Thereis no smoothing of the

contours done by the plotting package; thus, some of the contours are jagged.
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Figure52. Material Point Position Plots for Simulation 3
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6.3 Airbag Impact Simulation

6.3.1 Problem Description

Axisymmetric calculations of the interaction of an impacting probe with an inflated airbag were
performed and are reported by de Coo (1989). The cal culations were compared to experimental
results. A schematic of the problem is shown in Fig. 57. The MPM is used to perform two different

support ||
\ airbag, (580 x 315 mm
Major axes)
spring _ probe
ERVA

Figure 57. Airbag Impact Problem

simulations reported by de Coo where the diameter, mass, and impact velocity of the cylindrical

probe were varied. The parameters of the two ssmulations are listed in Table 7.

Table 7: Airbag Impact Simulations

. . Cylinder
Simulation | . Cylinder 1 Cylinder |\ Loy el ocity
Diameter (mm) | Mass (kg) (m/s)
Cyl-200 200 6.03 3.90
Cyl-500 500 8.05 4,70

Material propertiesfor the ssmulations are listed in Table 8.

Table 8: Airbag Impact Simulation - Material Properties

Airbag Property Value Air Property Vaue
Thickness 0.5mm Specific Heat Ratio | 1.4
Density 662 kg/m® || Density 1.2156 kg/m?
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Table 8: Airbag Impact Simulation - Material Properties

Airbag Property Value Air Property Value

Young's Modulus | 6x107 N/m? || Initial Pressure 4000 N/m?
Initial Specific
Internal Energy

Poisson’s Ratio 04 8226 Jkg

Materia properties of the cylinder were not listed. Therefore, Young's modulus was arbitrarily
chosen to be 5 x 107 N/m?, and the densi ty was adjusted to give the correct mass. The total airbag
mass was derived to be 367.2 g. Thus, airbag material point volumes were prescribed such that the

total airbag mass was correct.

6.3.2 Cyl-200 Simulation Results

Theinitial positions of the membrane material 0.35
points for this simulation were arrived at by conduct- |
ing asimulation with atether in the airbag as shown
in Fig. 58. The objective of this exercise was to

obtain an initial shape that matches that reported by

tether

deCoo. This simulation was run to approximately

steady state where the gas expanded and put the

tether in tension.

The plots of the probe and airbag material point

0 | -

positions for various times during the simulation are 0 005 01 015 02 025 03 035

shown in Fig. 59. The effect of the using thetether to ~ Figure 58. Initial Configuration with the
Internal Tether

determine initial material point positionsis seenin
thefirst plot of Fig. 59. The tether pulled the material to the left (denoted by the arrow in the top left
plot).

For the simulation with the probe, the tether was removed at the instant the simulation was started
because in the axisymmetric MPM calculation this tether is actually a conical shape and affects the
flow of the gas material points. The approximately 3,000 gas material points are not shown in Fig. 59
to increase the clarity of the airbag shape.

The predicted configuration of the airbag and impactor look plausible. The impactor causes the
airbag to bulge out on the sides. It eventually stops and rebounds to the right.
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Figure 60. Displacement Resultsfor Cyl-200 Simulation

Figure 60 shows a comparison of the displacement of the probe into the airbag for the MPM sim-
ulation, the PISCES simulation and the experiment. Figure 61 shows that the deformed airbag shapes
at t=40 ms are smilar.

The slope of the displacement past the peak appears different than the experimental slope. It was
thought that the effect of no tether may cause a more rapid rebound of the impactor. To test this the-
ory, asimulation was conducted where the tether was left in the simulation for the duration. It was
observed that the slope past the peak closely matched that of the experiment. However, the cylinder
displaced about 20 mm farther into the airbag. This excessive displacement is attributed to the “ coni-

cal” effect of the tether on the gas flow for an axisymmetric calculation.

6.3.3 Cyl-500 Simulation Results
The deformed configurations at various times are shown in Fig. 62. While the “Cyl-200" simula-

tion (Section 6.3.2) seemed somewhat insensitive to the initial configuration of the airbag, this simu-
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MPM

PISCES

-

Figure 61. Comparison of PISCES and MPM Defor med Configuration for t=40 ms

lation was indeed dependent upon the initial shape. More effort was put forth in this simulation to get
closer to the initial airbag shape used by de Coo. Preliminary simulations done with the 500 mm
diameter cylinder and the airbag initial shape as shown in Fig. 58 (but without the tether) showed
more displacement of the impactor into the airbag. The discrepancy seemsto liein the fact that when
the airbag shape is flatter the initial force that decel erates the impactor is higher.

Figure 63 shows the displacements of the 500 mm diameter probe for the MPM and PISCES sim-
ulations and the experiment. It takes longer for the probe in the MPM simulation to rebound. A possi-
ble explanation for the difference comes from examining Fig. 64 that shows both simulation

configurations at t=40 ms. There is more intimate contact between the probe and the airbag in the
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Figure 63. Displacement Resultsfor Cyl-500 Simulation

PISCES simulation than in the MPM simulation. The explanation is that contact between materialsin
the MPM is defined on the grid. Thus, the probe can cause the airbag to displace away from the probe
even when they are not in the same cell. To get the full effect of the gas pressure on the probe the air-

bag and probe should be very near to each other. This effect should be reduced with mesh refinement.
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MPM
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Figure 64. Comparison of PISCES and MPM Deformed Configuration for t=40 ms
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6.4 Chapter 6 Summary

Simulations of three different problems demonstrate the ability of the MPM to model fluid-struc-
ture interaction. The interaction is achieved by tagging material points as either afluid or a structure
and applying the appropriate constitutive model to determine stress components of the material
points. The standard MPM algorithm is then used to determine the grid-based internal force compo-
nents from the stress components of each material point. The results of the problems simulated com-
pare favorably to theory and/or experiment. Thus, the viability of a simple and robust algorithm for

simulating the interaction of fluids and solids has been demonstrated.
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CHAPTER 7. CALCULATING NORMALS

In all of the previously discussed problems, the local normal-tangential coordinate system for the
membrane material points was determined using the connectivity of the points. Thislocal coordinate
system must be determined to evaluate the membrane constitutive equation. Figure 65 shows a mem-
brane which is represented by the dashed lines through the material points which are solid circles.
When using connectivity, the normal vector, n, for amaterial point is determined from an average of

its neighbors. For example the tangent angle with respect to horizontal for particlep in Fig. 65is

S] +0
— _p=1p
ep = 5

.2 (7.1)

and the normal is 90 degrees offset from ep :

pt+1l t

Figure 65. Deter mination of Normal to Material Point p

In two dimensions using the connectivity datato determine the local coordinate system is conve-
nient and ssmple. In all the problems previously presented the connectivity datais obtained at no
additional “cost” to the user since the connectivity is the same as the input sequence for the material
points. However, amore general method to determine the local coordinate system would have the
advantage of allowing the user more flexibility in specifying the initial shape of the membrane. This
isespecially true in athree-dimensional application. Using connectivity datain three-dimensions to
determine the local coordinate system puts a heavy burden on the user to generate this data and will

require additional storage in the code. This chapter presents four different methods for determining
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the material point normals without using connectivity data. The methods are presented in order from
the least effective to the most effective. Following the presentation of the various theories, each oneis

tested on amodel problem.

7.1 Simple Color Function Approach

The basic ideawith this method is to define a color (number) function that is constant along the

membrane. The gradient of this function should be normal to the membrane. Thus, we start by defin-

ing acolor, X, for each membrane material point. All membrane material points have the same color.

Take the gradient of this function to define grid normals, n, , as
p

where G, p e the gradients of the shape functions as defined in equation 3.14.

To obtain normals at the material points, interpolate the grid normals to the points using linear

interpolation
n, = zniNi(Xp). (7.3)
i

This method averages the grid normals at neighboring grid points to define anormal at the material
point position. The use of equation 7.2 to determine grid normalsis not accurate because only mate-
rial pointsin the membrane are used which isinsufficient datato set up a gradient. The next two meth-

ods use higher order interpolation in an attempt to smooth the data.

7.2 Quadratic Interpolation

This method uses quadratic interpolation to define a cell color. The gradient of this cell color is
defined at grid nodes. The material point normals are determined by interpolating from the grid gradi-
ent.

The cell color is defined as

Xe = zxpsff)(x ) (7.4)
p
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where each material point will contribute to nine cell centers with the use of the weighting function

S(Cz)(X IO) (see Appendix 3.2 on page 174 for the definition of the weighting functions). The normal

for grid nodei is calculated by mapping the cell-centered color function to grid nodes using the same

gradient operator asin equation 7.2

ny = Z Gcixc (7'5)
|
The material point normals are determined by equation 7.3.

7.3 Cubic Interpolation

In this method the grid color is defined by using cubic interpolation. The normals at the material
points are calculated using a cubic gradient function. The higher order interpolation should give
smoother varying results than the last method.

The grid color is defined as
- (3)
Xi - ZXpSc (xp) (76)
p

where each material point will contributes to 16 grid vertices with the use of the weighting function

8(03) (X p) . Materia point normals are determined using the cubic gradient operator as
- (3)
np = 5 G (7.7)
i

7.4 MassMatrix Approach

This method solves a system of equations simultaneously to determine grid colorsthat define a

constant color along the membrane material points. We require that the grid colors, x; , define the con-

stant material point color, xg, according to
Xp = 3 XiNi(Xp) (7.8)
i

wherei ranges from one to the number of grid nodes. Now we ask what are the correct grid colors, X; ,
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to use in determining the particle normals as

Ny = 3 XONi(Xp). (7.9)

Equation 7.8 will be manipulated to define a system of equations. Multiply both sidesby N j (X IO) and

sum over p which gives
T XoNi(Xp) = 3 X Y Ni(XIN;(X). (7.10)
P P
Define amass matrix Tj; as
Tij = 5 Ni(XpN;(Xp). (7.11)
p

Now the system of equations to be solved can be written in matrix form as
{X%} 1xn, [Nl noxng X3 1xng[-|-ij]ngxng (7.12)

where subscripts ny,, the number of material points, and ng, the number of grid nodes, indicate the

dimension of the vector or matrix. This approach can be applied globally or locally. That is, all mem-
brane materia points may be included in the solution to equation 7.12 to globally determine the grid
colorsor it may be applied on some subset of material points. A convenient choice of a subset of
material points are those in asingle computational cell. This reduces the mass matrix to 4 x 4 which
can be quickly solved for the four grid colors.

If only membrane material points are included in a cell, one solution to the system defined in
equation 7.12 isfor each grid color to equal the membrane material point color. However, thisisthe
trivial solution which results in no gradient of the color. The desired solution is obtained by adding
one additional material point in the cell with a color different than that of the membrane color. When
the system of equationsis solved there is a gradient in the color, but the color is constant along the

contour defined by the membrane material points.

7.5 Testing the Methods on a M odel Problem

The model problemisthat of acircular cylinder of radius 1.0 as shown in Fig. 66(a). Thefirst test
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of the methods isto calculate the normalsfor the first time step of the calculation before any deforma-
tion has occurred. In some cases the calculation isimproved by adding material points interior to the
membrane as in Fig. 66(b). In these cases four and 16 points-per-cell are used to illustrate the

improvement. The second test is running the cylinder expansion problem using the different methods

to calculate the normals.

7.5.1 Calculating Normalsfor the First Time Step
Figure 67 shows the results for the simple color function approach. For both a vacuum and 4 PPC
fluid on the interior, the results are unacceptable. The results with fluid points on the interior as shown
in Fig. 67(b) illustrate how the normals change direction at cell boundaries. Thisisacommon prob-
y
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Figure66. (a) Quarter Symmetry Model Problem for Testing Normal Calculationsand
(b) Material Point Plotsfor No Fluid, 4 Points-Per-Cell (PPC) Fluid, and 16 PPC Fluid
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Figure 67. Normalsto the M embrane Points Calculated by the Simple Color Function Method for: (a) Vacuum
and (b) 4 PPC Fluid Material Points
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lem that will aso be seen in other methods.

Figures 68 and 69 show the results for the quadratic approach. Without interior fluid points the
results are poor. However, with fluid points on the interior the results improve drastically. Further
improvement is seen by having more fluid points on the interior asillustrated by comparing Fig.s
68(b) and 69. It should be noted that the normals only have to be determined to a precision of +180

degrees, athough it is aesthetically pleasing to have the normalsin a consistent direction.
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Figure 69. Normalsto the Membrane Points Calculated by the Quadratic Method for
16 PPC Fluid Material Points

Figures 70 and 71 show the results for the cubic method. The results without fluid points on the

interior are not as good as for the quadratic method, but with interior fluid points the results are better

than with the quadratic method. As seen previously, the results improve with more interior fluid

103



0T

(b)

Figure 68. Normalsto the Membrane Points Calculated by the Quadratic M ethod for: (a) Vacuum and (b)
4 PPC Fluid Material Points
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Figure 71. Normalsto the M embrane Points Calculated by the Cubic M ethod for 16
PPC Fluid Material Points

points. The results for the cubic method were obtained by running afull 360 degree simulation

because the boundary conditions for the cubic gradient were not implemented for this test.
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Theresultsfor the mass matrix method are shown in Fig. 72(a). Here no fluid points are necessary
for the interior. In fact the solution using the mass matrix method takes more computations if extra
non-membrane material points are used, and the results are degraded. For comparison the normals
using the material point connectivity are shown in Fig. 72(b). Thereisonly asmall difference

between the mass matrix approach and the computation of normals using the connectivity of the
material points.
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7.5.2 Simulating an Expanding Cylindrical Membrane

The model problem was run with the internal fluid using the various methods to cal cul ate the nor-
mals. The pressure of the fluid was such that the membrane should expand and begin to oscillate. The
only method that is successful besides using the connectivity is the mass matrix method. Figure 73

shows the time history of the change in the average cylinder radius.” Using the standard connectivity

0.2 3 3 3 3 3 ‘ I ‘

1 ,' : : connect avg
018 S A B — - mass matrix avg
T

] | %’,' | | —— cubicavg
o =T .

] 303~1

(2] 1

2012
3 1

4 o

S 0
(D) i

o ;

<0084 T T
O ’ cubic

0.06,,,,,,,,,,,,,,,,,,1,' ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

] 4 ? | | | S\ Mass matrix
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1 | | | | | - connectivity»

0 / i . .

— T T T
0O 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Time

Figure 73. Changein Cylinder Radius

approach (thick solid line), the cylinder expands and then beginsto oscillate. Thisis also true with the
mass matrix approach (long dashed line). However, the other approaches are not successful. It can be
seen in the cubic method (thin solid line) how the forces in the membrane only temporarily stop it

from expanding. Thisindicates that the normals are not accurate enough to result in stresses directed

"The changein the radius of material points at 0, 45, and 90 degrees are averaged.
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tangent to the membrane. The quadratic method is worse than the cubic method. By t=0.005 there are
enough accumulated errors so that the membrane has virtually no resistance to expansion. The mate-
rial point positions and normals associated with the membrane points at t=0.01 are shown in Fig. 74
for the two unsuccessful methods - quadratic and cubic. The material point positions for the four
methods at t=0.05 are shown in Fig. 75. The boundary of the simulation was at x,y=1.5, and a zero
velocity boundary condition was placed on these boundaries, so material will not expand beyond that
point.

Figures 75(a) and 75(b) are similar, which is expected since the cylinder deflections were similar
(Fig. 73). Figure 75(c) shows results for the cubic method. Some forces in the membrane where gen-
erated to resist expansion. Figure 75(d) shows results for the quadratic method were the membrane
did not resist expansion much at all. The membrane has been pushed against the boundaries of the

domain by the fluid.
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7.6 Further Analysis of the Mass Matrix Method

This section quantifies the effectiveness and the limitations of the mass matrix method when using

linear shape functions and solving a four-by-four system for each cell containing membrane points.

Recall that we desire that the grid colors, ¥; , define a constant material point color, xg , according to
0
Xp = inNi(Xp) (7.13)
i
where i ranges from one to the number of grid nodes. The particle normals are defined to be

n, = ZXiDNi(Xp). (7.14)
p

There will be some limitations in describing the particle normals with the gradient of linear shape
functions. Since the shape functions are linear, the gradients with respect to x will be constant in the x
direction and vary linearly in they direction. Similarly, the gradients with respect to y will be constant
in they direction and vary linearly in the x direction. Thus, the polynomial describing gradientsis
only linearly complete. The gradients of linear membrane contours should be accurately defined.
Other nonlinear contours may not be accurately represented. However, there is x-y coupling that will
be able to capture some nonlinearities in the membrane color contour.

Figure 76 shows results for alinear membrane contour oriented at 45 degrees to horizontal. The
membrane points are represented by solid circles. The color of the membrane material pointsis 1.0,

and the contours of color throughout the cell are plotted with solid black lines. These contours are

determined using the right-hand-side of equation 7.13 and the calculated grid colors X; . As expected,

the line connecting the membrane points represents a constant contour of 1.0. The predicted normal
vectors are exactly at 90 degrees (to machine precision) to the line connecting the membrane points.
Figure 77 shows results for alinear membrane contour oriented at 80 degrees from horizontal. The
material points are not evenly spaced. Again, the color contour of 1.0 is aigned with the material
points. The normal vectors are close to the theoretical angle. On average, each vector orientation is
within 0.01 degrees of being exact.

Figure 78 shows results for anonlinear configuration of the membrane points. Here the function

defining the location of the material pointsis xy + 0.1x+ C = 0, where C isa constant. Note the
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e Mmembrane point
+ random point

—p computed normal
color contour line

0 AW 1

Figure 76. Membrane Points Oriented at 45 deg, Associated Color Contours,
and Calculated Normals

presence of the bilinear term xy. It can be seen in Figure 78 that the color contour of 1.0 isaligned
with the material points. The endpoints (x,y) of the predicted normal vectors are aligned with the the-
oretical ones to within the fifth decimal place.

Figure 79 showstheresultsfor acircular contour of membrane particles of radius 0.4. In this case,
the color contour of 1.0 does not lie on membrane points. The interpolated color of the membrane
points ranges from about 1.08 to 1.25. As expected the normals are not as accurate as in previous
cases. One material point normal is off several degrees while others are more accurate (compare solid
thick vectorsto dashed vectors).

The previous examples show that the method can give very good results. However, there are cer-
tain conditions under which this method fails. If the particles are arranged in acell such that the mass
matrix is singular or nearly singular, the resulting solution for grid color isinaccurate. For example
consider avertical arrangement of membrane material points. In this case the mass matrix is nearly
singular. The arrangement of material points and results are shown in Figure 80(a). The normals,

which should be exactly horizontal, are obviously inaccurate. If one material point is perturbed in the
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T
5
e membrane point
+ random point
—p computed normal
color contour line
4
- -2
0 [
0 1

Figure 77. Membrane Points Oriented at 10 deg, Associated Color Contours,
and Exact Calculated Normals

x direction, the condition number of the mass matrix improves greatly. However, the solution for grid
color issuch that there is no gradient in the center of the cell as shown in Figure 80(b). In this case the
resulting contours within the cell are nearly symmetric. The material points away from the cell center

have accurate normals, but the one point near the center does not.
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e membrane point
+ random point

—p computed normal
color contour line

T
R\
A

Figure 78. Membrane PointsAlong a Curve xy=C, Associated Color Contours,

and Calculated Normals
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Figure79. MembranePointsAlong a Circular Arc and Associated Color Contours, and
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It can be shown that equation 7.14 can be written in terms of the material point local coordinates

(r,s) and constantsa and b as

S 1-r
Npx = &a+ b and Npy = —%a+c (7.15)
where constants a, b, and ¢ are functions of the grid colors
a=X1—X2*tX3—Xa
b=—-X;+X> (7.16)

The nomenclature for the local coordinates and grid colorsis shown in Fig. 81. Therelationship in

s A y
L»x
X4‘ X3
p
grid colors
\leﬂ —

X2

Figure 81. Nomenclature

equation 7.15 reveals alimitation in describing material point normals within asingle cell. Consider
three material pointsin aunit cell asshownin Fig. 82. Assume that the normals for the material points
are as shown, and treat the unknowns as the constants a and b in equation 7.16. The equations for

material points one and two are

s,a+hb = Nox1 (7.4

s,athb = Nox2

where s; and s, arethelocal y-coordinate of the two material points, and n,,; and n,, arethex

px1

components of the particle normals. Now assume materia points one and two have the same y-coordi-
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I o~

Figure 82. Unit Céell with Three Material Points

nate. The two equations now have the same left-hand-side. Thus, the only solution is for the normal
component in the x direction to be the same for both material points which, in general, isinconsistent
with our initial assumptions about the normal vectors. A similar analysis can be done for material
points that have the same x-coordinate. The result in this case requires that the norma component in
the y-direction be the same for the two particles. It is difficult to infer the performance of this method
given the above discussion because when one assumes the material points have an identical x or y
local coordinate nothing is said about the other. The following example helpsto quantify the problems
associated with predicting normals to an arc within acell.

Figure 83 shows the color contours and normalsto acircular arc. The lower plot of Figure 83 and
those in Figure 84 show the normals after progressively rotating the circular arc about the center of
the cell. It can be seen that material points that have nearly the samey coordinate (near the top of the
arc) have x components of normals that are nearly the same. Thisis most evident in the lower plot of

Fig. 84 where the materia points with identical y coordinates are labeled.
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predicted normal

exact normal

membrane points

random point

— predicted normal

—— exact normal

—e— membrane points
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Figure 83. Normalsto a Circular Arc
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Figure 84. Normalsto a Circular Arc
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7.7 Using Quadratic Shape Functionsin the Mass Matrix Method

Using higher order shape functions should improve the calculation of the normal vectorsin cer-
tain situations when the method with linear shape functions breaks down. Equations 7.13 and 7.14

can be rewritten with higher order shape functions as

zxcs(z)(x (7.18)

where c ranges from one to nine. The quadratic shape functions, Sff)(x p) -are defined in Appendix

Section A.3.2. Here, colors are defined at nine cell centersinstead of four grid vertices. The particle

normals are defined to be

= 3 X082 (X,). (7.19)
p

Figure 85 illustrates the normals to acircular arc and color contours using quadratic shape func-
tions. The membrane material point positions are identical to those of Fig. 84(bottom). Cells sur-
rounding the one with material points which were empty are not shown. The predicted normal vectors
lay on top of the theoretical ones, which is an improvement from the previous method. Also, note that
the contour of color within the cell iscircular. Thiscircular contour is not possible using linear shape
functions,

The dog-bone membrane expansion problem discussed in Section 6.2 (page 75) was run using the
mass matrix method with linear shape functions. The results showed that the membrane expanded too
much indicating errors in the normal vectors. Thus, the mass matrix method with quadratic shape
functions was used, and the results were better. Figure 86 compares the normals to the membrane par-
ticles at t=0 using the mass matrix method with quadratic shape functions and the connectivity of the
membrane points. The normals are accurate with the mass matrix method. Figure 87 compares the
positions of material points at various times during the simulation using the connectivity approach
and the mass matrix method with quadratic shape functions to calculate the normal vectors. The left-
hand (blue/red combinations of material points) side is the simulation using connectivity, and the
right-hand (cyan/dark-red combinations of material points) side is the simulation using the mass

matrix method.

123



Chapter 7 - Calculating Normals

1 — S
/1.81 6/ \1 61.8\ —— predicted normal
14 / \\ —— exact normal
—e— membrane points
+  random point
0.8
12 i
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14 14
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Figure 85. Normalsto a Circular Arc Using Quadratic Shape Functions

In the cases when a single membrane material point was in acell, the region considered was
expanded to agroup of four cells and the mass matrix method with linear shape functions was used.
Only the normal for the single membrane point was calculated using the expanded cell.

Figure 87 shows that at early times the particle positions are similar, indicating that the mass
matrix method is calculating normals effectively. However, at later times differences are seen in the
solutions. The radius of the membrane grows larger using the mass matrix method as compared to

using connectivity. The reasons for this are still under investigation.
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7.8 Chapter 7 Discussion and Summary

It is desired that a membrane simulation be performed without having to specify the connectivity
of the material pointsto define the local normal-tangential coordinate system. Several methods were
investigated that allow the membrane normal to be determined without using connectivity data. The
guadratic and cubic methods (not using a mass matrix approach) seemed to hold promise, but they
require more material pointsto “assist” in defining the normal. Also, the additional material points
need to be clustered near the membrane to provide consistently good normal data. These methods
failled in the practical application to a cylindrical membrane filled with afluid under pressure. The
only method (besides using connectivity) that worked in the practical application was the mass matrix
method. When linear shape functions are used, a set of four equations must be solved simultaneously
for each cell containing a membrane particle. The solution gives grid colors that when interpolated to
the membrane material points result in a contour of constant color. The gradient of this color function
is used to define the material particle normals. However, there are limitations to this method. For
example, normals to acircular arc cannot be represented exactly.

A disadvantage to this method is when thereis only one ghost cell
(dashed line)

membrane material particlein acell. The single-cell-based

method has no way of defining a contour with only one parti- N
cle. One solution may be to use the previously calculated nor- °

cell with
mal until there are at least two membrane material points per ° | = single
cell. Or, alarger “ghost cell” can be defined that includes . E)na(??ctl)reane

more material points. (Fig. 88).

The mass matrix method with linear shape functionsis Figure 88. Ghost Cell Concept
not adequate for the complex dog-bone membrane expansion problem. Therefore, a quadratic method
was used with some success. The quadratic method can accurately calculate normalsto a circular con-
tour. However, there are still limitations to this method that need to be defined.
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CHAPTER 8. STABILITY ANALYSIS
8.1 Background

A stability analysis of the material point method was motivated from simulations where unphysi-
cal material point accelerations were observed. After further study of the problems with these simula-
tions it was determined that there were two causes, neither of which were stability-related. The first
was with the numerical implementation of the method. In some cases division by a very small grid
mass caused unnaturally large accelerations. This problem was corrected by changing to a momen-
tum formulation where the numerator and denominator balanced. The potentia benefits of the
momentum formulation were known before this research started.

The second problem occurred during slow, quasi-static, or dynamic relaxation (static) simula-
tions when a small number of material points per cell (PPC) were used (ref Section 5.4.3, page 48).
Because the internal force is proportional to the number of PPC in the current implementation,
unphysical internal forces which lead to noisy increments in accelerations may result (ref Section 2,
page 171). These noisy accelerations cause larger relative error in slow or static simulations. This
problem can be corrected by using a larger number of PPC or by using smoothing techniques.

There have not been any numerical indications of instabilities with the MPM when applying the
CFL condition on the timestep based on the grid size. However, a stability analysis can frequently
giveinsight into how to improve the method. Since aformal analysis of the MPM method has not
been documented, an attempt is made here at such an analysis. The results of this section show that

the CFL condition based on the grid size is the proper criterion to apply.

8.2 Introduction

Because one full time step in the material point method involves both a Lagrangian step, where
the material points and grid vertices move, and aregrid step, arigorous anaytical stability analysis
that considers arbitrary movement of material pointsis difficult. Thisis especially true if material
points are allowed to cross cell boundaries in the analysis.

The von Neumann method is used here becauseit is usually the easiest method to apply (Fletcher
1991). Also, the problem is reduced to one dimension and limited to alinear elastic material.

In the von Neumann method, the errors distributed along grid lines at onetime level are expanded

asafinite Fourier series. The stability of the algorithm is determined by considering separate Fourier
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components of the error. In astable algorithm, the errors decay (or do not grow) from one time step to
the next. In an unstable algorithm, the errors amplify.

For linear discrete governing equations, the corresponding error terms will satisfy the same equa-
tions. The procedure used in this analysisis as follows:

1) determine the governing equation at one grid node that advances the solution one time incre-
ment,
2) substitute for the solution variable the quantity £¢'® wherei = /(=1), j isthe grid node des-

ignator, € istheerror, 8 = TAX, and Ax isthe grid spacing,
k+1

3) form the quantity, G, where G = £ is the gain or amplification factor,

k
€

4) determine the conditions for which |G| < 1, which should impose some condition on the time
step.
For this analysis the governing equations of the material points are used. It appears that these
eguations are easier to manipulate than the equations for agrid node. Thisis due to the fact that the
velocity of amaterial point does not change from the Lagrangian step through the regrid step, which

isnot true for agrid node. Thisis elaborated upon in the next section.

8.3 Notation for Time Levelsand Relevant Equations

Table 9 gives the material point equations and corresponding diagrams for afull time step of the
MPM algorithm. It is assumed that the initial material point stress and initial internal grid forces are
zero. Two-dimensional figures are used for illustration purposes only.

The material point equations at time level L2 will be written in terms of material point quantities

attimelevel L1.
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Table9: Material Point Method - Equations for One Full Time Step

Iime Description Configuration Equations
evel
Given initiad material — /\? 0,,0 0.., 0
point positions, oV vi M; ZmprNu(Xp)
i p
0 Stresses, and veloci 0 o o o
ties. I\_/I_apmltla_l guan- i M, = ZmpNi(xp) fi =0
titiesto grid. D
L1 .0 0,0
Lagrangian step: The (v =Vvi)/At = /M,
grid eguations of 11 _ 0 0 L1 L1
motion are solved. Vp = Vpt szi Ni(Xp)/ M;
Material point veloci- !
ties and positions are L1 X;L)l = xg + ZAtViLlNi(le_)l)
L1 updated. The updated p i
material point veloci- ~L1 _ L1 L1 L1
ties are used to deter- Vi T %mpvp N ()7 M
i i L1
mine new grid Vi L1 _ L1~L1
velocitiesfrom which Ae,” = Atz GipVi
material point strains ] 0
are calculated. 0'51 = EAe:[,1 + g%(
Return gridto original
re- ; : o
grid or arbitrary config. -
1_ 11 1 1 1 L1
Vp = Vp 1 0p = 0p, Xp = %y
1_ 1
The material point Mi = zmpNi(Xp)
1 quantities are . P L1
mapped to the new / v, = Zmpva,(xp)/Mi
grid vertices. p
1 _ 1 1,1
fi = —Z mMyGin0y/ Pp
p
Lagrangian step: The L2 1 1
grid equations of [L)Z vi —vi o0
Lo | motionare solved. At M
Material Point veloci- Lo 1 1 1 1
tiesand positions are V-2 Vp =Vt ZAtfi N;(Xp)/ M;
|

updated.
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8.4 Stability of the Material Point Equations

Consider the one dimensional problem shown in Figure 89 with grid nodes indexed 1,..., j-1, |,
j+1,..,nand, smilarly, material points designated 1,..., p-1, p, p+1,...,n-1. Both the grid nodes and
material points are equally spaced, with spacing Ax. There is one material point per cell. The follow-
ing simplifying assumptions will be made at some point in the analysis (it will be clearly stated when
these assumptions are made):

» The materia points have the same mass, m, density, p, and Young's modulus, E.

» The material pointsinitially have the same spacing relative to one another. This does not
assume that they are in the center of the cell. Thiswill lead to the assumption that the initial
grid masses, M, are equal to m, and that the shape function values are initially equal. That is,
N; for all material pointsisthe same and N, for al materia pointsisthe same, but N; does

not necessarily equal No.

1 j-2 -1 ] j+1 j+2 n

WQDCDODQDOM

p-2 p-1 p p+1 p+2
X ® grid node

] material particle

Figure 89. One-Dimensional Problem Notation

The one dimensional shape functions for element [j,j+1] are

_ _ Xj+1_xp _ —
N, = Nj(xp) = A Nz(xp) =1-N; = 1—NJ- (8.1

where Xj+1 isthe x coordinate of grid node j+ 1, and x, isthe x coordinate of material point p. These

shape functions have compact support. That is, the shape functions are nonzero for material point p
only in the element which contains material point p. Figure 90 illustrates the shape functions associ-
ated with each element. Note that for brevity the “(x)” has been dropped from the shape functions,
and the shape functions are a function of the x coordinate. The contribution of material point p to

nodesj and j+1 is determined by shape functions N; and (1-N;).
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1 j-2 p-2 j-1 p-1 j p j+1 p+tl j+2 p+2 n
o/y e T o T e T e T e Dw
|
N2 N,
N N

Figure 90. Shape Functions Associated with Each Element

The governing equations will be developed for material point p, in element [j,j+1]. First the equa-
tion for the velocity at time level L2 for material point p will be determined. Then the terms of this
equation will be subsequently expanded until only terms at time level L1 are present. The velocity
increment for material point p is determined by the forces at the surrounding nodes, j and j+1,

Lo j+1

1 1 1 1
Vp = Vpt z AtfIN;(Xp)/ M; (8.2
i =

where superscript L2 designates the Lagrangian velocity at step 2, superscript 1 designates the mate-

rial point velocity at step 1, At isthetimeincrement and Mi1 isthe massvalue at grid nodei. Expand-
ing the summation about the indicated grid nodes gives

L2 1 1 1 1 1 1 1
Vg2 = Vg AN () M+ £7, (1= N (x5))/ M}, 3 (8:3)

where t is understood that N , ;(X;) isreplaced by (1—N;(x5)) S0 that the indices of the shape

function and material point coordinate, j and p, are the same.

Now the forces at nodes| and j+1 can be written in terms of the stresses at time level 1. Thisgives

p p+1
1 _ 1 1,1 1 1 1, .1
fj = - Z qujqcyq/pq fj+1 = - Z qujJrlqcrq/pq (8.9
q=p-1 q=p

where G iq Isthe gradient of the shape function (the one-dimensional equivalent to equation 3.14).

Making the assumptions that all material points have the same mass, m, and density, p, ssimplifiesthis
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equation to

1 m, .1 1 1
fy = _E(Gj,p—lop—l”Gi.pcp) five = (GJ+1 pGD+GJ+1 p+10p+1) (8.5)

After substituting the expressions for the gradients, equation 8.5 becomes

1 mi1 1 m 0
fj = __D%XD 1t D_]-DGFD fje1 = _Eﬁ_x{j D—_:E E (86)
Updating equation 8.3 with the force values from equation 8.6 gives
AtmO N;05) (1=N; ()0
L2 1 mbl 1 1, N 11 — N;
Vp T VP_A_XE%{GP—l_OP} =B+ {oy-0p, p ——10. (8.7)

i IVlj +1 U
Now the stresses in equation 8.7 will be written in terms of grid vel ocities and subsequently mate-

rial point velocities. The stress at amaterial point iswritten in terms of the surrounding grid node
Lagrangian velocities, V. For example

i+1
Lioll _ L1-L1 B 0 1 = 1-~10
i= ] (8.8)
1 At ~L1 ~L1
op - EA_X{_VJ + J+1}

where the factor of At takes strain rate to strain, and the factor E takes strain to stress. By shifting the

indicesin equation 8.8, expressions for the stresses at material points p-1 and p+1 can be written as

1 At ~L1 | ~L1 1 At ~L1 | ~L1
Op-1 = EC{=ViZ1*+Vj’} Op+1 = Ep{-VivatViid - (8.9
Letting ¢? = % and substituting equations 8.8 and 8.9 into 8.7 gives
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1
1 2 t 2 Eﬂ] ~L1 ~ L1 L1 DN(X)
Vo= © DSEmEE_Vi—“ZVJ BA/ES Tl

L2 [l Mj
Vp = . (8.10)

O .11 ~r o1 O(1=Ni(xp)O

0V, +2v,-+1—vj+25—1J P .

O M O

j+1
Now, the Lagrangian grid velocities need to be written in terms of material point velocities. For

grid node j-1, thisis written

p-1
~L1 L1 L1 L1
Vil = Z MV Nj_1(Xq)/ M2y
q=p-2 (8.12)
~L1 _ m L1 L1 L1 L1
j-1

Since the shape function index always matches the material point index, we can simplify the notation
by letting

L1 L1
Nj_y(x5iq) = Nj2g. (8.12)

Shifting indicesin equation 8.11 gives the Lagrangian velocities at other grid nodes as

~L1 _ m L1 L1 L1,,L]
Vit = “TalVe-1(1=Nj_y) + v Ny}
i
~L1 m L1 L1 L1 L1
Vit = = 1V (B=N) +vg N} (8.13)
j+1
~L1 m L1 L1 L1 L1
Vj+2 - T{Vp+1(1_Nj+1)+Vp+2Nj+2} :
j+2

Equations 8.12 and 8.13 need to be substituted into equation 8.10. First, rewrite equation 8.10 as

1 1
2 [N; 1-N; O
v:gz _ VE—CZDMD m JlaLl_l_( : J)bLlD

BV [M; Mj 1 O

(8.14)

where
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+2Vi+1-Vi . (8.15)
O
Now expand a1 to give

o 1 L1 L1 L1, L1

0 M,
2 L1 L1 L1, L%
a-t = M—Ll{vp_l(l—Nj_l)+Vp Ny} - (8.16)
j
1 L1 L1, L1 1.0
j+1 b
and b~ to give
01 1 1Ny 4 EINGS 4
mE"MLl{Vp—l( —Nj—) +vp Nj}
]
2 L1 L1 L1 ,,L1
bt = vy (LN + v N g - (8.17)
j+1
1 L1 L1 L1 L1,
MT{Vp+1(1_Nj+1)+Vp+2Nj+2} E

j+2
Now apply the assumption that the material points areinitially evenly spaced so that the grid

masses equal the material point massesinitialy. Thisimpliesthat all Nle, j = 1,..,n areequal, but

the indices will be carried to illustrate the form of the equations. Then a-! and b+t simplify to
L1 L1 L1, L1
(_{Vp_z(l_ Nj o)t Vp_1(Nj Tt
L1
a = Vlﬁl_l(l _ N:‘f )+ le_)lN:__l} B (8.18)

L1 L1 L1 L1
(ERL-NEY VL NEL )

and
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L1 L1 L1,,L2
L1 _ L1 L1 L1 L1
b™ = 2{v,"(1-N;) + V51 Njy  — (8.19)
L1 L1 L1 L1
{Vp+1(1_Nj+1)+Vp+2Nj+2}) .
1 1,1 ~ 1 N N g .
Let Mj = m(1-Nj+Nj,;) = mMjand — = —L == wherethe superscript “(1)"
M: mM; m
] ]
o . . . . . . (1-Nj) _ &P
indicates thisterm isafunction of variables at the “1” time level. Similarly, let ===
1 m
Then equation 8.14 can be rewritten as
2
v = v PR (d W+ e Up) (8.20)

where the superscript on v, was changed from 1 to L1, because vh = v for al material points.

p
Next, the materia point velocities in equation 8.20 need to be factored. Consider the term

(d(l)aL1 + e(l)b"l) . Thisis expanded to give

~{Vpo(L=NZ) v (N + 0 Ol (=N + v iNpY + O
dPH 2pvht (1N ) Vs - B et a o i Nty - B
THaN RN D 0Bk ) vk N ) D
(8.21)
which issimplified to
Vil o(-d P -Nty) +
veo 1 (dP2(1 =N ) = NP e PN +
vtl(d(l)[ZNle—(l—N;-‘l)] +e(1)[2(1—Nle)—N:-_1])+ (8.22)
Vo 2(=0'Np g + e 2NT - (1N D) +
VFL)1+ 2(—e(l)NjLi 2) -

Thus, equation 8.20 becomes
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L1 1 L1
- vt o(-dP(L-NT)) +

Voo a(@V12-3N ] - eI -N ) +

O
O
1l
20 E
L2 _ L1 2[At; L1, (1 L1 1 L1
Vo =V ~C il 0 Vb (d P3Nt - 17 + P23 + 0 (8.23)
L1 1Ll 1 L1
E Vp+1(—d Nj+1+e( )[3Nj+1_1])+ E
O L1 1), L1 O
O Vp+ 2(—8( )Nj+2) O
Notethat if all material point velocities areinitially equal, then e = 1-d% and equation 8.23

reduces to vt,z = Vl‘;l . This makes sense because if the material point velocities are equal there will

be no velocity gradient, and, thus, no strains or internal forces are acting on the system.
To this point we have carried node indices for the shape functions at time level L1. The assump-

tion that the material points areinitialy equally spaced resultsin

N:™ = N j=1,...n (8.24)
where N istheinitia value.

The coefficients d'™ and eV can be written in terms of material point velocities at time level
“L1" Recall that

N N
dV = L = b (8.25)
and
1 1
1-N’ 1-N’
e = 1 = ' (8.26)

S - 1 1 .

L

The expression for le depends on the old value, N? = N,

J ! , and the velocity increments ij o Thus,

Oo 't 110
1_ Xj+17%p _ 0 0

.= i=j
NJ AX AX '

(8.27)
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j+1
1 .,0 At L1,,L1
i=
Replace in equation 8.28 the expression for grid node velocities and write them in terms of mate-

rial point velocities. Asin equation 8.11, this gives

L1
p-1

Z
|

At L1 L1 2
= N—Z)—((N(l—N)(v +Vp+1)+vp (2N"=2N +1)) (8.29)

and the other N&,k = j—1,j +1 have similar forms obtained by shifting the indices. Setting all ini-

tial material point velocitiesto zero except Vo substituting equation 8.29 and similar formsinto equa-

tions 8.25 and 8.26 and substituting this into equation 8.23 gives®

2

0 v, f)a%tg {6N*—12N3+ 11N% 5N} +2vp%EN—6N2+6N 0

0 0

= _y B, 200 B

VL2 _ VLl_CZEHDZE me)dj"'vpm)@ 0 E

p p

A %— 1+ 3va§—EN(N _1)+ %Evggl " 3vpa%th(N _1)+ E%qu%

0 0

0 0

0 0

(8.30)

Now assumptions can be made on the initial location of the material points which defines the shape

function values, N. For thefirst case consider N=0 which gives

L1
200 | 1(v, —2Ax/At)0
v? = vtl—cz%tg At . (8.31)
07 (vp —Bx/0t)0

Neglecting the higher order term in equation 8.31 gives

L1
L2 o L1 2ROV A/ AN D

_ Py . (8.32)
R S (RN INs

Substituting the error €p for v, and assuming gp«l givestherelation

1. Algebraic calculations performed with Maple (see Appendix A.4.14).
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L2 _ (Ll 2[At525(25 'Ax/ a0 e 2P

L1
SR Qes' +ax/and " ~C i (280 ) - (8.33)

This gives an amplification factor of

_ 2D
G=1-Ccn2- (8.34)

For |G| < 1 two cases are evaluated. Thefirst is

i \\ng
G<10 —"5rq 250 (8.35)

which puts no condition on the time step.

The second case, G > -1, gives

G>-10 —czggg 252

feini\ng 8.36
v <1 (8.36)

At<EX
c

which is the Courant or CFL condition. For N=1, the final result is the same as in equation 8.36.

For N=0.5, where the material points areinitially in the center of the cell, equation 8.30 reducesto

2
L2 _ L1 20D % L1 (V ) —4(Ax/ At) E

V-2 = _c (8.37)
P i X 0 (Vp ) —16(Ax/At)%

which, after neglecting higher order terms, substituting €, for v,, and assuming that €, « 1, gives

p 1

L2 22, L1D4(Ax/At)2DD

e =€, Lig :sngl—C— At (8.38)
PP T I EIL6(AX/At)% PO 2D

For this case the amplification factor is
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2 2
G = 1—%5g (8.39)

<0. (8.40)

2T, (8.41)

This result (equation 8.41) indicates that using material pointsinitially in the center of the cell allows
for atime step twice as large as the time step that can be used when material pointsareinitially on the

sides of the cells.

8.5 Numerical Simulations Performed to Test Analytical Results

A model problem was set up test the results of the previous analysis. This elastic one-dimensional
problem used five material points, al with zero initia stress. Theinput fileislisted in the appendix on
page 189. The center material point was perturbed with avelocity in the +x direction. Table 10 gives

the parameters used in the problem.

Table 10: Stability Test Problem Parameters

Item Description Value
No. of Material Points | 5, one per
cell
E 1.0e6
Y 0.0
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Table 10: Stability Test Problem Parameters (Continued)

Item Description Value

density 1.0

velocity perturbation | 1.0e-8

The time step was varied and the energy was monitored over time as an indicator of stability. Fig-
ure 91 shows the energy history plots. The time step was varied from a value below that of the CFL
condition to a value above it. The legends in the plots indicate the size of the time step.

For materia pointsinitially in the center of the cells, the first unstable time step observed was
twice that of the CFL limit. For material points at the sides of the cells, the first unstable time step
observed was afactor of 1.1 timesthe CFL limit. The results are close to the analytical results involv-

ing factors of 2.0 and 1.0 times the CFL limit, respectively.
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Figure 91. Numerical Results of Stability Testsfor: (a) PointsInitially in the Cell Cen-
tersand (b) Points Initially at the Sides of the Cells
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8.6 Stability Summary

In this chapter a stability analysis of the MPM was performed with many simplifying assump-
tions. The analysis assumes a one-dimensional linear-elastic material with one material point per-
turbed from itsinitial position. The material point is not allowed to change cells following the
perturbation. These assumptions must be made to reduce the equations to a manageable form.

The results of the analysis show that the critical time step is afunction of the location of the mate-
rial points. For the cases examined the smallest critical time step corresponds to the CFL condition.
Numerical tests were performed simulating the particular cases that were studied analytically. Favor-
able agreement is seen between the critical time step determined analytically and the critical time step

observed in the ssimulations.
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CHAPTER 9. SUMMARY AND CONCLUSIONS

The first two chapters are introductory in nature. In Chapter 1 the problem of fluid-structure
interaction isintroduced. The materia point method (MPM) isidentified as a potential framework
for smulating the interaction of fluids and solids. The structure considered in this work is a mem-
brane which had not been previously modeled using the MPM. Chapter 2 summarizes the current lit-
erature and methods that are used to simulate fluid-structure interaction. One of the areas identified
as needing improvement is the handling of interfaces. The most popular method (as measured by the
amount of literature on the subject) for simulating the interaction of fluids and solidsis a coupling
between an Eulerian method for the fluid and a L agrangian approach for the solid. In this type of
coupling there is no problem with fluid mesh distortion. One disadvantage of the method is that the
interface of the structure with the Eulerian mesh must be determined and the appropriate interface
conditions have to be imposed. Herein lies the opportunity for improvement by using the MPM. No
dlip contact conditions and enforcement of the interface conditions are inherent to the MPM and are
obtained at no additional computational cost.

In Chapter 3 the basic formulation for the MPM is presented and forms the baseline for the
research. The formulation fits within aframework that is standard to the finite element approach. The
MPM employs a fixed mesh and Lagrangian material points that move through the mesh. The weak
forms of the governing equations are determined. A discrete form of the momentum equation is
obtained that is solved at grid or mesh vertices, and the relationship between the grid solution and
material pointsis presented. When a diagonal mass matrix is used, a simple explicit algorithm isthe
result.

In Chapter 4 the modifications necessary to simulate compressible viscous fluids are discussed.
The additions to the method are a new constitutive equation and the solution of the energy equation
which is necessary to employ an equation of state (i.e., the ideal gaslaw) for the fluid. Different
methods of determining fluid density were investigated. The nearest-grid-point method is noisy, but
thisisimproved by using the continuity equation or a higher order interpolant (e.g., quadratic) to
determine material point density. The fluid formulation is validated by simulating a propagating
shock (Sod’s problem) and a gas expansion problem.

The modifications to the MPM necessary for the simulation of a membrane are described in
Chapter 5. Prior to the beginning of the research it was unknown if the method could accurately

resolve the forces along a contour of material points using a reasonable mesh size, especialy if only
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asingle layer of pointswere used through the thickness. The results indicate that indeed the method is
quite successful at describing a membrane. The use of multiple particles through the thickness was
investigated and determined not to be feasible at this time due to the requirement of connectivity data
between the material point layers. With success of asingle layer of particles for representing a mem-
brane there is also no strong need to develop a formulation with multiple layers.

A novel way to incorporate awrinkle in amembraneisintroduced. A “one-way” constitutive
equation is proposed that results in a material point contributing zero force to the grid when itisin
compression. The compressive strain is accumulated and released incrementally until the particleis
determined to be in tension, the point at which the wrinkle is*pulled out.”

Several model problems are solved involving amembrane. A swinging pendulum problem is sim-
ulated, and convergence is demonstrated. A spring-mass system is simulated, and the results compare
favorably to theory. Other simulations show results that are intuitively correct.

Chapter 6 discusses how the fluid and membrane descriptions can be combined to model fluid-
membrane interaction. The approach issimplein that nothing “extra’ hasto be done. Fluid and mem-
brane points are tagged as such, and the appropriate constitutive equations are invoked for each mate-
rial point. The standard MPM approach to solving the governing equations using the internal forces
from the fluid and membrane is used. This method for fluid-structure interaction is simple and robust.
Three model problems demonstrate the utility of the method. Convergence is demonstrated in the
membrane expansion problem with four consecutively refined ssmulations. The impact of a probe
with an airbag shows reasonabl e agreement with experiment. The most dramatic part of these results
isthat acomplex phenomenainvolving retention of gasin the airbag and impact of the probe with the
airbag is simulated with a ssimple algorithm.

Chapter 7 summarizes the approaches that were investigated to obtain the normal to the mem-
brane at amaterial point without using connectivity data. Once the normal vector is known, it is easy
to ensure that the stresses in the membrane points are tangent to the membrane. Although no work has
been in this research with respect to three-dimensional simulations, it was realized that having to use
connectivity data of material points to define the surface in 3-D would be difficult, and it was desired
not to preclude the extension of thiswork to 3-D.

One method was found to be superior to the others. The current implementation involves solving a
four-by-four or nine-by-nine system of equations for grid or cell colors that, when interpolated to the

material points, defines a contour of constant color. The gradient of this constant contour defines a
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normal. This method, known as the mass matrix method, was used to simulate an oscillating fluid-
filled cylindrical membrane, and the results are virtually the same as when the material point connec-
tivity is used. The dogbone-shaped membrane expansion problem was also simulated without using
connectivity.

Chapter 8 presents a stability analysis of the MPM for alinear elastic material in one dimension.
Simplifying assumptions must be made to have tractable equations. The results indicate that the CFL
condition governs the critical time step.

To conclude, this research has developed a version of the material point method applicable to
problems involving fluid-membrane interaction. At each step of the development the results were val -
idated. Theinherent simplicity of the explicit agorithm has been retained, and the method is shown to
be effective on a number of problems. However, for applications to industrial problems, a three-
dimensional version of the code is necessary. This research provides the foundation that indicates the
work implicit in athree-dimensional formulation isjustified. Overall, the simplicity and generality of
the algorithm would make solutions to complex fluid-membrane interaction problems tractable with

modest computer resources.
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A.1CONTACT-RELEASE ALGORITHM

A.1.1 Background

In attempting to run several example problems involving contact, it was observed that two bodies
sometimes “ stick” to one another unphysically when they should separate. Thisis caused in some sit-
uations when material points from two bodies come close to each other and are in the same computa-
tional cell.

A simple example of two impacting bars will demonstrate the problem, and then an algorithm is

described that allows the bars to release from one another.

A.1.2 Two-Bar Impact With No Contact-Release Algorithm

Theinitial conditions for the two-bar impact problem are shown in Fig. 92. The left bar has an ini-
tial nonzero velocity v|0 , and the right bar is stationary. What should happen in this situation for a
purely elastic impact where the bodies have no resulting strain energy is that the right bar will move
to the right with velocity vr1 = v|0, and the left bar will have zero velocity.

What happensin reality for elastic materialsis that the right bar will move off with alarger veloc-

ity than the left bar, which will be nonzero. The ratio between the initial and final velocitiesisthe

coefficient of restitution, €, where € = (vr1 —v|1 )/ (vlo—v?).

left bar right bar
For both bars:
E=1x10° .
v =03 . Vi =0
p=1 v
plane stress

Figure 92. Initial Conditionsfor Two-Bar Impact
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Figure 93(a) showstheinitial material point configuration and the configuration at t=0.5. It can be
seen that the two bodies do not separate. Thisis more evident in the lower plot of the center of mass
velocity and position. The velocity of the two bodies oscillate as they move to the right together. The
portion of the velocity plots between t=0.35 and t=0.425 where the two bodies have constant vel ocity
occurred when the bodies were separated by one cell, and thus, were not in contact with each other.
Contact is defined to be the case when two bodies share agrid node, i.e., when material points of two
bodies both contribute to the solution at a grid node. This does not necessarily mean that material
points from two bodies are in the same computational cell.

Another way to look at the problem isto consider the constitutive equation for material at the sur-
face of abody. Free surfacesidentify astate of plane stress. When two bodies come in contact, normal
and shear components of the traction vector can be sustained and the constitutive equation must
reflect this condition. When the bodies start to rel ease, the normal component of traction becomes ten-
sile. In fact the constitutive eguation should be altered back to plane stress but in a general algorithm
thisstep isnever performed. Theresult isan “apparent” sticking which is not a physical phenomenon.
Solutions consist of altering the constitutive algorithm or checking the nodal velocities. The latter

approach is probably the most efficient and is described next.

A.1.3 Algorithm to Allow Release

A ssmple algorithm is proposed that allows bodiesto release. The ideaisthat if the bodies are
moving toward one another, as determined by some test criterion, the standard MPM method is used.
That is, the material points of each body are moved in the “center-of-mass’ velocity field which
enforces the no-penetration condition. If the bodies are moving away from one another, they are
moved in their own velocity field.

Recall from equation 3.19 that center-of-mass velocities are obtained by solving and integrating

the governing equation

ext
i

S ma; = F™+F™ i =1, ..n 9.1

where F:m istheinternal force at grid node i resulting from all material points even if they are from

different bodies. New center-of-mass vel ocities are obtained from integrating the center-of-mass
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accelerations

k+1

v = v:( + Atar : (9.2)

Recall that the velocity at time level k is determined from material point velocities at time level k as

Z m v = Z MgV ION,(X (9.3

j=1

Equations 9.1 through 9.3 can also be written for a separate body | as

n
z |(]|) M _ I:lnt(l)_'_Fext i=1..n (9.4)
j=1
where theinternal force isfrom material pointsin body I. Equation 9.4 isintegrated to give a velocity
field on the grid due only to body |

V:<+ 10) _ V:<,(I) +Ata:(’(l) (9.5

where the velocity at the previous time step is determined from material points of body |

% ) z mVEON, (xKO) 9.6)
j=1
If the bodies are determined to be in contact, equations 9.1 through 9.3 are used, and if they are
releasing from one another equations 9.4 through 9.6 are used.
The contact-release criterion is evaluated at each grid node that is shared by two bodies. Cur-
rently, three criteria have been evaluated. The first compares the normal component of the velocity of
body 1 to that of body 2. The criterion at grid nodei is

((1) (2)) (1) _ >0 - contact

9.7
<0 o release

(1)

where n;™" isthe outward grid normal from body 1, which in this case has been designated the master

body.

The second criterion is similar, but compares the velocity of the body to the center-of-mass veloc-
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ity

(Vgl)_ gcm))_ a@ = >0 - contact
|

(9.8
<0 S release

where the superscript cm indicates center-of-mass. This formulation is attractive because the informa-
tion as to which body is contacting body 1 is not needed. Here, body 1 is considered the master body.
Thetest criteriain equations 9.7 and 9.8 gives the same result for the two-bar impact problem and the
ball and net problem that will be described in Section 1.6. For each of these problems a single shared
grid node was monitored at each time step throughout the entire ssmulation. At this grid node both cri-
teriawere evaluated and were found to give identical results as to whether or not to enforce contact or
allow release. Also the time history datafor position and velocity of both bodies are the same for both
criteria.

The third criterion does not use the master body concept. Here, if two bodies are in close proxim-
ity to one another, each of the bodies’ velocity is compared to the center of mass velocity. Releaseis
allowed only if both criteria agree, and subsequent changes to contact, release, etc. are allowed only

then. This criterion can be stated as

1 n g
(Vi( ) (Cm)) n( ) >0 - contact

(Vi(Z) Vi(cm)) n,(Z)D <0 - release

I:II:I

(9.9)

|

A.1.4 Calculating Grid Normals

The method for calculating the grid normals in equations 9.7 and 9.8 uses the color function
approach described here. Each material point of a particular body is assigned a color (number) unique
to that body. Interpolation of the material point color to the background grid defines the color func-

tion. The normals to bodies are determined by taking the gradient of this color function.

Let XS) be the color of amaterial point belonging to body I. To smooth the function somewhat,

interpolate the material point color to cell centers using quadratic interpolation
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where each material point will contribute to nine cell centers with the use of the weighting function

S(Cz)(X IO) , and xg) isthe cell-centered color function for body I. The normal for grid nodei is calcu-

lated by mapping the cell-centered color function to grid nodes using the same gradient operator
described in Section 3

9
! |
ni() = z Gcix(c) (9.112)
c=1

An example of the normals calculated using equation 9.11 is shown in Fig. 94. Due to the nine
point stencil of the quadratic interpolating function more normals are cal cul ated than would be used

in the contact-release algorithm and, thus, only the pertinent normals are shown in the figure.
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Figure 94. Grid Normalsfor One Bar of the Two-Bar Impact Simulation

A.1.5 Two-Bar Impact With Contact-Release Algorithm

Now let’s return to the two-bar impact problem and see the results using the contact-release ago-
rithm as described in Appendix 1.3. The criterialisted in equations 9.7 and 9.8 give the same results,
which are presented here. Figure 95(a) shows the material point positions at t=0 and t=0.5. At t=0.5
the right bar has moved away from the left bar. Thisis more evident in Fig. 95(b) where the center of

mass velocity of the left bar goes from 2 to about 0.3 and the right bar goes from 0 to about 1.7.
The coefficient of restitution iscalculated tobe € = (1.71-0.29)/(2-0) = 0.71. Thetildeis
applied to € to indicate a pseudo coefficient of restitution that includes numerical dissipation. This

value is reasonable for impact of two e astic bodies and more physical than € = 0 which isthe result
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without the contact-release algorithm.

It has been observed that the contact-rel ease algorithm is dissipative whereas for elastic bars, there

is no dissipation. Figure 96(a) shows the energy history plot for the simulation above where vi = 2.

Thereis about an 11% drop in energy after the impact. Figure 96(b) shows the total energy histories

for two different bar impact ssmulations. Here v? = 20 and results are plotted for two mesh sizes.
The dissipation appears to be less in the more refined simulation, and the amount of energy dissi pated
is about 2% in each case. For these simulations the more refined simulation showed € = 0.81, and

the less refined showed € = 0.82. The energy spikein the less refined simulation represents only

about a 3% increase and is attributed to noise.
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A.1.6 Ball and Net Simulation

The physical situation for this smulation is shown in Fig. 97. A disk (called aball) of radius R=3
hasaninitial velocity in the x direction and impacts awire (called a net) which has alength of 10. The
net ismodelled as a uniaxial membrane and the ball uses a plane stress model. Both are assumed to be

linear elastic.

y/7/7/4

10

R=1.

N\

Figure 97. Ball and Net

The parameters of the problem are listed in Table 11.

Table 11: Parametersfor the Ball and Net Simulation

Parameter Ball Value Net Value
Density 1.0 0.5
Young's Modulus | 1 x 10* 1x 10*
Poisson’s Ratio 0.3 0.0
Initial Velocity 1.0 0.0
thickness n/a 0.0125

It was this problem that motivated the devel opment of arelease algorithm. Originally the reason
to run this simulation was to demonstrate the membrane formulation, but it was discovered that the
ball would stick to the net and not release properly when rebounding to the left.

Figure 98 shows the simulation results without a contact-rel ease algorithm. The ball actually does

release from the net, but the velocity isvery small (~0.1) asit releases to the left. The lower plot
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showing the ball velocity indicates that the ball does not release when the velocity is the maximum to
the left, but sticks to the net which slows it down.

Figure 99 shows the simulation results with a contact-rel ease algorithm. Figure 100(top) shows
that the ball releases from the net when the ball’s velocity is (approximately) maximum to the left.
Thisiswhat should occur in arealistic situation. The bottom plot of this figure shows the energy his-
tory. After approximately t=0.8 the ball total and net total energies remain approximately constant
indicating that the two bodies are not interacting.

Figure 101 shows the ball and net grid normals cal culated with the algorithm described in Section
1.4. Asin the previous figure showing the bar normals, the normals that would not be used in calcula-
tions are not shown. Note that the normals from the membrane are directed outward from both sides
of the membrane. This gives the membrane an effective thickness for contact problems. The mem-
brane can contact materials from both sides without the problem of having to know from which side
of the membrane the normal is directed, which may occur, for example, in finite element calculations
with shell elements.

In fact this method allows the membrane to be pinched between two materials which cannot be
done with conventional Lagrangian finite element contact schemes. The breakdown in the finite ele-
ment contact approach to pinching occurs when the thin material isforced out of one body and imme-
diately goesinside the other body. The contact algorithm responds by forcing the thin material out of
this second body and back inside the first.

The disadvantage to the contact in the MPM is that the boundaries of the material are somewhat
smeared over acell width. Thus, the fidelity of precisely defining the contact surfaces may be lost.

However, the fidelity improves as the mesh is refined.
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A.2 EXAMPLE: NOISE FROM A PARTICLE CHANGING CELLS

This material supports the discussion in Section 5.4.3, page 48. Consider the mass-spring simula-
tion shown in Fig. 102 that consists of ten material points numbered sequentially from top to bottom.

This problem was run with the MPM code.

«— top: zero velocity BC
" material point 1

seleey

® <+ materia point 6

® ~T— materia point 10
mass=100x others

y
A x
Figure 102. Set Up for aMPM Spring Simulation

At sometimein the ssmulation, material point 6 isjust about to cross cell boundaries. At this point

in the simulation there are stresses, s, (in the y-direction) and grid node forces, fy, as shown below.

5,=123,034

5,=181,170

Figure 103. Forcesand Stresses Prior to Material Point Crossing a Cell Boundary

The stresses are constant in each cell because the velocity gradientsin the y-direction are constant in
each cell.
At the next Lagrangian step the particle position and velocity are updated. Then the grid nodes are

updated with new velocities to calculate strains. Next, we regrid. Now material point 6 isin the next
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lower cell, but its stress was cal culated based on velocity gradients from its previous cell. So the situ-

ation with stresses and new grid forcesis

f,=2,183 A|__®
® =123,274
Hs

fy=-3.940 || —&5F123274
o §179,802
o 8,179,802
f,=5,123

in same cell

Figure 104. Forces and StressesAfter Material Point 6 Crosses a Cell Boundary

Note the change in direction of forces which occurs since material point 6 isin acell with two
other material pointsthat have alarge stress (atotal of 3 material points) and the cell aboveisleft with
only two particles that have alower stress. This situation causes material point 6 to have an unphysi-
cal negative y acceleration (down), and, in fact, induces a slowly developing instability defined as an
increase in energy over time.

There may be another contributing factor to the increase in energy. Just when this situation with
point 6 occurs, the spring is nearly at its peak of vibration. Thus, the velocity of point 6 issmall when
it crosses the cell boundary. As noted in the discussion in Section 5.4.3, page 48, this problemis alle-

viated if force smoothing or more material points per cell are used.
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A.3 INTERPOLATION FUNCTIONS

A.3.1Linear Interpolation

For linear mapping or shape functionsthe s A y
convention shown in Fig. 105 is adopted. A T_»
rectangular cell of size Ax by Ay is defined cell I 3 X
with four grid nodeslocally numbered from 1 ‘9
to 4 in a counterclockwise manner. The cell grid nodes p
in physical space is mapped to a unit cell in L%ﬁltgrgrofgﬁi fy
logical space. A material point p resides at
logical (or local) coordinates (r,s) in the cell. \v 1‘ Ax 2 =
Thelogical coordinates range from0to 1
with the origin at the bottom left grid node. Figure 105. Nomenclature

The four linear shape functions defined over
the cell inlogical space are:

N].:(l-r)* (1-5)!

No=r*(1-9),

N3: r*s,

Ng= (1-9)*r.

Derivatives of the shape functions are used to define a discrete gradient and divergence. The deriva-

tives with respect to the global x direction are:
Gy =-(1-9)/Ax,
Gy, = (1-9)/AX,
Gg= 9AX,

G4X:'S/AX ,

and the derivatives with respect to the global y direction are:

Gyy=-(1-1)/ Dy
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Goy=-r/Dy
Gay=r/Ay
Gyy= (L-r)/ Ay

A.3.2 Quadratic Interpolation

In this case thelogical coordinatesr and s are defined from the cell center as shown in Fig. 106(a)

and range from -0.5 to +0.5. A particlein cell 1 will contribute to the cell centers of the nine neighbor-

ing shown in Fig. 106(b).” The support of the quadratic shape function is —3Ax/2 < r < 3Ax/ 2 and

similarly for s.
cell 1\7
AS
4 3
5 4 3
A
r y 6 1 2
Y
1 7 8 9
AX 2 y

(@ T—>X (b)

Figure 106. (a) Nomenclature and (b) Neighbor Cell Designations

The weighting functions, S, for each of the nine cell centers as a function of the material point’s
logical coordinates are listed in Table 12.

* Note that this function is mapping to cell centers and not grid vertices.
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Table 12: Quadratic Interpolation Functionsfor a Unit Cell in Logical Space

S =(0.75-r%*(0.75-69) Sy =25+ ((5+1)* (.5+9))
S;” =05+ (05+)%(0.75-5) &) =25+ ((51)* (5+9)?
S =0.5%(0.75-r2)* (0.5+5)2 S2) = 25+ ((.5-1)* (5-9))2
S =0.5¢(0.5-1)%(0.75-59) S2) = 25+ ((5+1)* (.5-9))?
S =0.54(0.75-r)* (0.5-5)2

These functions are denoted ng) (X ID) wherethe “(2)” indicates a quadratic interpolation func-

tion, and “c” indicates the cell index. Table 13 lists the derivatives of the quadratic interpolation func-

tions.

Table 13: Derivatives Quadratic I nterpolation Functions

X derivatives y derivatives

2 =- 2r (.75 - )X s =-25(75-r?)iny
S =(5+1) (.75 - 2 )/AX (i,) =-o.5+1)%Ay
S2 =-r(5+9)2/Ax Si =(0.75-1)(5+9)/Ay

2 =-(51)(.75-D)/Ax 2 = 51)2Dy
2 =-r(5-9%nx ) =-(.75-1%)(.5-9)/ Ay
SP) = 5( 5+r)(.5+9)%/Ax 2= 5(5+)X(5+9)/ Ay
2 = 5(5-1)(5+5)2 Ax (2) = 5(.5-1)2(.5+3)/ Ay

2 = 5(.51)(.5-5)2/ Ax P = 5( 502 5-9/0y
S =5(.5+)(.5-92/ A D) 5(54m)%(5-9)/y
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A.4INPUT FILES

Input files are listed in boxes. In some cases there are two input files for each simulation. The sec-

tion and the page number containing the simulation are listed in the heading.
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A.4.1 Sod’s Problem (Section 4.1, page 36)

Tary "
"sods probl ent

$in

nx=101, ny=2, iprint=0, igen=1,gravc=0.0,

x| ef t =0. 0e0, xri ght =1. 0e0, ybot =0. e0, yt op=0. 01, cntr=1. 0,
t max=0. 143, t st ep=1. d- 4, dt nax=1. d- 4, t pl t =0. 4,

tol =1.e-4, mter=30, | arge=.fal se., W =6, w =6, wb=6, wt =6
out (13) =1, ti out (13)=0.0501,

out (30) =0, ti out (30)=0.01

out (33) =0, tiout (33)=0.001

out (34) =0, tiout (34)=0.01

out (35) =0, ti out (35) =5. 00,

out (36) =0, ti out (36)=0.01

out (37) =0, tiout(37)=2.5e-1

out (38) =0, tiout(38)=0.01

out (39)=1,tiout(39)=0.05

$

$fluid

mu=. 00, gml=.4, siep(l)=2.50, siep(2)=2.0, |anmbda=1.00,
coef1=1. 0, coef2=1.0

$

$regrig

$

$reg

nreg=2,

nvi =4, 4,

xvi (1, 1) =0. 0eO0, . 5e0, 0. 5e0, 0. 0e0,

yvi (1, 1) =0. 0e0, 0. 0e0, 0. 01e0, 0. 01e0,

xvi (1, 2) =0. 5e0, 1. 0e0, 1. 0e0, 0. 50e0,

yvi (1, 2) =0. 0e0, 0. 0e0, 0. 01e0, 0. 01e0,

xcent er =0. 25e0, ycenter=0. 21e0,

ri x(1)=0.0e0, rex(1)=200.

riy(1l)=0.0e0, rey(1)=200.

ri x(2)=0.0e0, rex(2)=200.

riy(2)=0.0e0, rey(2)=200.

nprg=9, 9,

densir(1)=1. e0, densir(2)=0.1250,

matr (1, 1) =1. e5, 0. 0e0, 10. e25, 2. e25, 1. 0e20, 1. e2, 0. €0,
matr (1, 2) =1. e5, 0. 0e0, 10. e25, 2. e25, 1. 0e20, 1. e2, 0. €0,
i path(1, 1) =3, 3, 3,9,

i path(1, 2)=3, 3, 3,9,

vrx(1)= 0. 0e0,

vry(1)= 0. 0e0,

vrx(2)= 0.0e0,

vry(2)= 0.0e0

$

Box 1. Input File For Sod’s Problem
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A.4.2 Gas Expansion (Section 4.2, page 40)

Tary”
'"1/4 cylinder gas expansion”
$in

nx=21, ny=21, iprint=0, igen=1

x| ef t =0. 500e0, xri ght =1. 50e0, ybot =0. 500e0, yt op=1. 50e0, cntr =1. 0,
t max=0. 02d0, t st ep=0. 001e0, dt max=0. 001e0, t pl t =0. 5,

tol=1.e-4, mter=30, | arge=.fal se., W =6, w =1, wb=6, wt =1
iout(13)=1,tiout(13)=0.5,

i out (30)=0, tiout(30)=1.d-1,

i out(31)=0,tiout(31)=1.d-1,

i out (32)=0,tiout(32)=1.d-1,

i out (33)=1,tiout(33)=0.02,

$fluid

nmu=. 00e0, gml=.4, siep(l)=250.0, |anmbda=0.00,
coef 1=0. 0, coef 2=0. 0

$

$regrig

$

$reg

nreg=1,

nvi =4,

xvi (1, 1) =0. Oe0, 1. 0e0, 1. 0e0, 0. 0e0,
yvi (1, 1) =0. 0eO0, 0. 0e0, 1. 0e0, 1. 0e0,
xcenter=0.5, ycenter=0.5,
rix(1)=0.0d0, rex(1)=0.376,
riy(1)=0.0d0, rey(1l)=0.376,

npr g=9,

densir(1)=1.e0,

i path(1,1)=3,3,3,7,

vrx(1)= 0. 0e0,

vry(1)= 0. 0e0,

$

Box 2. Input For Gas Expansion Simulation
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A.4.3 Spring-Mass Simulation (Section 5.5, page 50)

Crary
""mass on a single vertical spring "

$in

nx=2, ny=21, iprint=0, igen=0,

x| ef t =0. 00e0, xri ght =0. 100e0, ybot =0. 00e0, yt op=2. 00e0, cntr=1. 0,
t max=0. 101d0, t st ep=0. 18d- 5, dt nax=0. 18d- 5, t pl t =0. 5,
tol =1.e-4,nmter=30,1arge=.fal se.,w =1, wr =1, wb=1, wt =0
iout(13)=1,tiout(13)=0.2,

i out (30)=0, tiout(30)=0.001
iout(31)=0,tiout(31)=1.d-1

i out (32)=1,tiout(32)=0.2,

i out (33)=1,tiout(33)=0.0002

i out (34) =1, tiout(34)=0.0002

gravc=-250. 0d0

nmet hd=0

$

$fluid

$

$regrig

$

$reg

$

Notes on running this problem Hardwi re nass of heavy particle.
Make sure input in file 2 for no. particles per cell is correct.

Box 3. Input File 1 for Spring-Mass Problem

1.0d-1 ldensity

1. d6, 0 OdO, 10 d25, 2 d25, 1 Od25, 1 d2, 0 dO !'material cons
3,3,3,8 Iconstitutive equation

0 I'no. particles in the sequence

0,3 I'total no. particles, no. per cel

. 0500001. 9900000. 000. 000. 000. 000. 00
. 0500001. 9566670. 000. 000. 000. 000. 00
. 0500001. 9233330. 000. 000. 000. 000. 00
. 0500001. 8900000. 000. 000. 000. 000. 00
. 0500001. 8566670. 000. 000. 000. 000. 00
. 0500001. 8233330. 000. 000. 000. 000. 00
. 0500001. 7900000. 000. 000. 000. 000. 00
. 0500001. 7566670. 000. 000. 000. 000. 00
. 0500001. 7233330. 000. 000. 000. 000. 00
. 0500001. 6900000. 000. 000. 000. 000. 00

cNoNoNoNoNoNolNoNoNol il

Box 4. Input File 2 for Spring-M ass Problem
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A.4.4 String-Mass (Section 5.6, page 54)

Thefirst input fileisidentical to that of the spring-mass simulation. The second input is different
and islisted in Box 5.

1.0d-1 ldensity
1. 0d6, 0. 00d0, 10. d25, 2. d25, 1. 0d25, 1. d2, 0. dO
3,3,3,8 Iconstitutive equation
10
10,3.0
0. 050000 1.990000 0.00 0.00 0.00 0.00 0. 00
0. 050000 1.956667 0.00 0.00 0.00 0.00 0. 00
0. 050000 1.923333 0.00 0.00 0.00 0.00 0. 00
0. 050000 1.890000 0.00 0.00 0.00 -1.d5 o0.00
0. 050000 1.856667 0.00 0.00 0.00 -1.d5 0.00
0. 050000 1.823333 0.00 0.00 0.00 -1.d5 0.00
0. 050000 1.790000 0.00 0.00 0.00 -21.d5 o0.00
0. 050000 1.756667 0.00 0.00 0.00 -1.d5 0.00
0. 050000 1.723333 0.00 0.00 0.00 -1.d5 o0.00
0. 050000 1.690000 0.00 0.00 0.00 0.00 0. 00

Box 5. Input File 2 for String-Mass Simulation
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A.4.5 Pendulum Simulation (Section 5.7, page 56)

The pendulum problem requires two input files. Thefirst is the standard input file, and the second
isfile containing theinitial material particle positions. Boxes 6 and 7 show the input for the pendulum
simulation with 40 material particles. Input for the other smulations is obtained by changing the grid
definition and time step in thefirst input file, and putting in the initial particle locations in the second

input file.

Tary"
" "swi ngi ng pendul unt" '

$in

nx=8, ny=11, iprint=0, igen=0,

x| ef t =0. 00e0, xri ght =0. 700e0, ybot =0. 00e0, yt op=1. 00e0,
t max=1. 75d0, t st ep=2. e- 5, dt max=2. e- 5,
tol=1.e-4,mter=30,large=.fal se., W =1, w=1, wb=1, wt =0

gravc=- 20. 0d0, net hd=0
$

$fluid

$

$regrig

$

$reg

nreg=1

$

iout(13)=1,tiout(13)=0.
i out (30)=1, tiout(30)=0.
iout(31)=0,tiout(31)=1
i out (32)=1, tiout(32)=0.
i out (33)=1,tiout(33)=0.
i out (34)=1,tiout(34)=0.
i out (35)=0, tiout(35)=5.
i out (36) =0, tiout(36)=0.
i out (37)=0, tiout(37)=0.
iout(38)=1,tiout(38)=1
i out (40)=0, tiout (40)=0.

25,
2,
d-1,
2,
0100,

Notes on running this problem Hardwi re mass of heavy particle.
Make sure its mass is 3.3. Use np2=6.06/3.03/1.515 for 20/40/80
si mul ati ons

Box 6. Input File 1 for Pendulum Simulation
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1. 0d- ldensity
1. d6, . 00d0, 10. d25, 2. d25, 1. 0d25, 1. d2, 0. dO
3,3,3,8 Iconstitutive equation

.333330.99990
. 327380. 98203
. 321420. 96416
. 315460. 94629
. 309500. 92842
. 303550. 91055
.297590. 89268
.291630. 87482
. 285680. 85695
. 279720. 83908
.273760. 82121
. 267800. 80334
. 261850. 78547
. 255890. 76760
. 249930. 74973
. 243970. 73186
. 238020. 71399
. 232060. 69612
. 226100. 67825
.220150. 66038
. 214190. 64252
. 208230. 62465
.202270. 60678
. 196320. 58891
. 190360. 57104
. 184400. 55317
.178440. 53530
.172490. 51743
. 166530. 49956
. 160570. 48169
. 154620. 46382
. 148660. 44595
. 142700. 42808
. 136740. 41022
. 130790. 39235
. 124830. 37448
.118870. 35661
.112910. 33874
. 106960. 32087
. 101000. 30300
0 np for pendul

P OOOCOODO0ODO0OO0O0O0OO0DO0O0DO0O0O0DO0O0DO0DO0OO0DO0O0ODO0DO0OO0DO0DO0OO0DO0OO0OO0DOO0OO0O0O0O0O00O0O0
C 0000000000000 000000000000000000000000000
eNeoNoNoNoNolNoNoNoNoNoNoNolNoloNoNoNoNoNoNololoNoNoNololNoNoNoloNolNolNoloNoelNollolNolNo]
OO0 0000000000000 0000000000000000000000000
ceNeoNeoNoNoNoNoNoNoNoNoNoNolNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoloNoNoNoNoNoNoNeNoelNe]
OO0 0000000000000 0000000000000000000000000
eNeoNoNoNoNoNoNoNoNoNoNoNolNoNoNoNoNoNoNoNoNolNoNoNoNoNoNoNoNoloNoNolNolNoNoNoeloelNolNe]
CO000000000000000000000000000000000000000
eNoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNeoNoNoNoNoNoNolNoNoNoNoNoNoNoNoNoNe]
OO0 0000000000000 0000000000000000000000000
eNeoNeoNoNoNoNoNoNoNoNoNoNolNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoloNoNoNolNoNoNoelNelN oo

n1smnng

Box 7. Input File 2 for Pendulum Simulation
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A.4.6 Ball and Net Simulation (Section 5.9, page 67)

ary
""ball and net orig"
$in

nx=41, ny=41, iprint=0, igen=3,

x| ef t =0. 00eO0, xri ght =10. 0000, ybot =0. 00e0, yt op=10. 0e0, cntr=1. O,
t max=4. 02, t st ep=0. 0001d0, dt nax=0. 0001d0, t pl t =0. 5,
tol=1.e-4, mter=30,arge=.fal se., W =0, w =1, wb=0, wt =0,
out (13) =1, tiout (13)=1.0,

out (31)=0,tiout(31)=1.d-1

out (32)=0, tiout(32)=1.d-1,

out (33) =0, tiout (33)=0.005,

out (34) =1, tiout (34)=0.005,

out (37) =0, tiout (37)=2.5e-1,

out (40) =0, ti out (40)=0. 1,

met hd=0, gravc=0. 0

$

$fluid

$

$regrig

$

$reg

nreg=1,

nvi =4,

xvi (1, 1) =0. 0e0, 10. 0e0, 10. 0eO0, 0. 0e0,

yvi (1, 1) =0. 0e0, 0. 0e0, 10. 0e0, 10. 0e0,

xcent er =5. 625, ycenter=5.0,

rix(1)=0.0d0, rex(1l)=1.5,

riy(1)=0.0d0, rey(1l)=1.5,

nprg=4,

densir(1)=1.e0,

ipath(1,1)=3,3, 3,0,

matr (1, 1)=1. e4, 0. 30e0, 10. e25, 2. €25, 1. 0e25, 1. e2, 0. €0,
vrx(1)= 1.0e0

$

Box 8. Input File 1 for Ball and Net Simulation
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A.4.7 Membrane Expansion (Section 6.2,page 75)

Tary"
" "menbr ane_expansi on"
$in
nx=33, ny=33 iprint=0, igen=3,
x| ef t =0. 0dO, xri ght =1. 60d0, ybot =0. 0d0, yt op=1. 60e0, cntr=1. 0,
t max=8. 500014, t st ep=0. 35e- 4, dt max=0. 35e-4, t pl t =0. 5,
tol=1.e-4,mter=30,1arge=.fal se., W =4, w =1, wb=4, wt =1
out (13) =1, tiout(13)=2.00,
out (32) =1, tiout(32)=2.00.,
out (33) =1, tiout(33)=0.02,
out (34) =1, tiout(34)=0.02,
out (37) =0, tiout(37)=0.15,
out (39) =1, tiout(39)=2.0,
out (40) =1, ti out (40)=2. 00,
out (41)=1,tiout(41)=2.0.,
met hd=0
$
$fluid
mu=0. 10, gnil=.4, siep(1)=0.25d3,0.25d3,
| ambda=0. 00, coef 1=0. 0, coef 2=0. 0
$
$regrig
$
$reg
nreg=2,
nvi=4,4,4,4,4,
xvi (1,1)=0.0, 0.426, 0.426, 0.00,
yvi (1, 1)=0.0, 0.000, 0.900, O0.95,
xvi (1, 2)=0.426, 0.90, 0.90, O0.426,
yvi (1, 2)=0. 650, 0.65, 0.74, 0.900,
xcent er=0.0, 0. 0,
ycenter=0.0, 0.0,
rix(1)=0.0d0, rex(1)=2000.,
riy(1)=0.0d0, rey(1)=2000.,
rix(2)=0.0d0, rex(2)=2000.,
riy(2)=0.0d0, rey(2)=2000.,
npr g=64, 64,
densi r(1)=1.d0, densir(2)=1.dO0,
ipath(1,1)=3,3,3,7,
ipath(1,2)=3,3,3,7
$

0.5
1. 0d6, 0. 300d0, 10. d25, 2. d25, 1. 0d25, 1. d2, 0. dO
3,3,3,8
600
600, 6.8207
0. 4999900. 0011100. 00. 00. 00. 00.0

Box 9. Input for Membrane Expansion Simulation 4
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A.4.8 Cyl-200 Airbag Simulation (Section 6.3,page 88)

ary"'
""TNO Airbag Simcirc plate 200-restart”
$in
nx=17, ny=26, iprint=0, igen=3,
x| ef t =0. 00e0, xri ght =0. 320e0, ybot =- 0. 001e0, yt op=0. 499¢0,
t max=100. e- 3, t st ep=3. 5e- 6, dt max=3. 5e- 6,
tol=1l.e-4,mter=30,large=. fal se.,w =5, w =1, wb=0, wt =0,
iout(13)=1,tiout(13)=20.e-3,
iout(33)=1,tiout(33)=8.e-4,
iout(34)=1,tiout(34)=4.e-4,
i out (41)=1, tiout(41)=10.e-3,
gravc=0. 0d0, net hd=0, cyl =1. 0
$
$fluid
gml=. 4, si ep(1) =8226. 39, si ep(2)=8226. 39, nu=0. 0
$
$regrig
nregri g=0
$
$reg
nreg=3,
nvi =10, 3, 4,
xvi(1,1)=0.0 ,0.14,0.22, 0.26, 0.28 ,0.26, 0.22, 0.18,0.14, 0.0,

xvi(1,2)=0.08, 0.0, 0.0,

yvi (1, 2) =0. 299, 0. 318, 0. 299,

xvi (1, 3)=0.0, 0.10,0.1,0.00,

yvi (1, 3) =0. 329, 0. 329, 0. 409, 0. 409,
xcenter=0.0,0.0,0.0, ycenter=0.0,0.0,0.O0,

rix(1)=0.0, rex(1)=100.0,
riy(1)=0.0, rey(1)=100.0,
rix(2)=0.0, rex(2)=100.0,
riy(2)=0.0, rey(2)=100.0,
rix(2)=0.0, rex(3)=100.0,
riy(2)=0.0, rey(3)=100.0,
nprg=16, 16, 4,

densir(1)=1.2156, densir(2)=1. 2156, densi r(3)=2375.

matr (1, 1)=1. e0, 0. 3e0, 0. 00e0, 0. 00e0, 1. 0e20, 0. e2, 0. e0,
matr (1, 2)=1. e0, 0. 3e0, 0. 00e0, 0. 00e0, 1. 0e20, 0. e2, 0. e0,
matr (1, 3) =5. e7, 0. 3e0, 10. 00e25, 10. 00e25, 1. 0e20, 0. e2, 0. €0,
i path(1,1)=3,3,3,7,

i path(1,2)=3,3,3,7,

i path(1, 3)=3, 3, 3,0,

vry(3)=-3.90

$

yvi (1, 1) =0. 002, 0. 01, 0. 037, 0. 077, 0. 139, 0. 219, 0. 261, 0. 289, 0. 299, 0. 299,

Box 10. Input File 1 for Cyl-200 Simulation
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A.4.9 Cyl-500 Airbag Simulation (Section 6.3.3, page 91)

ary"'
""TNO Airbag Simcirc plate 500-restart”
$in
nx=18, ny=26, iprint=0, igen=3,
x| ef t =0. 00e0, xri ght =0. 340e0, ybot =- 0. 001e0, yt op=0. 499€0,
t max=40. e- 3, t st ep=3. 5e- 6, dt nax=3. 5e- 6,
tol=1l.e-4,mter=30,large=.fal se.,w =5, w =1, wb=0, wt =0,
iout(13)=1,tiout(13)=20.e-3,
iout(33)=1,tiout(33)=8.e-4,
iout(34)=1,tiout(34)=4.e-4,
i out (36) =0, tiout(36)=0.01
iout(41)=1,tiout(41)=10.e-3,
gravc=0. 0d0, net hd=0, cyl =1. 0
$
$fluid
gml=. 4, si ep(1) =8226. 39, si ep(2)=8226. 39, nu=0. 0
$
$regrig
$
$reg
nreg=3,
nvi =10, 3, 4,
xvi(1,1)=0.0 ,0.14,0.22, 0.26, 0.28 ,0.26, 0.22, 0.18,0.14, 0.0,
yvi (1, 1) =0. 002, 0. 01, 0. 037, 0. 077, 0. 139, 0. 219, 0. 261, 0. 289, 0. 299, 0. 299,
xvi(1,2)=0.08, 0.0, 0.0,
yvi (1, 2) =0. 299, 0. 31, 0. 299,
xvi (1, 3)=0.0, 0.250,0.25, 0.00,
yvi (1, 3) =0. 315, 0. 315, 0. 395, 0. 395,
xcenter=0.0,0.0,0.0, ycenter=0.0,0.0,0.O0,

rix(1)=0.0, rex(1)=100.0,
riy(1)=0.0, rey(1)=100.0,
rix(2)=0.0, rex(2)=100.0,
riy(2)=0.0, rey(2)=100.0,
rix(2)=0.0, rex(3)=100.0,
riy(2)=0.0, rey(3)=100.0,
nprg=16, 16, 9,

densir(1)=1.2156, densir(2)=1.2156, densir(3)=360.

matr (1, 1)=1. e0, 0. 3e0, 0. 00e0, 0. 00e0, 1. 0e20, 0. e2, 0. e0,
matr (1, 2)=1. e0, 0. 3e0, 0. 00e0, 0. 00e0, 1. 0e20, 0. e2, 0. e0,
matr (1, 3) =5. e7, 0. 3e0, 10. 00e25, 10. 00e25, 1. 0e20, 0. e2, 0. €0,
i path(1,1)=3,3,3,7,

i path(1,2)=3,3,3,7,

i path(1, 3)=3, 3, 3,0,

vry(3)=-4.70

$

Box 11. Input File 1 for Cyl-500 Simulation
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A.4.10 Piston-Container (Section 6.1, page 72)

ary"'

'"d son-Bat he (1983) spring-piston-fluid
$in

nx=2, ny=41, iprint=0, igen=3,
x| ef t =0. 00eO0, xri ght =1. 00e0, ybot =0. 00e0, yt op=40. 0e0, cntr=1. 0,
t max=0. 035, t st ep=5. d- 5, dt max=5. d- 5, t pl t =0. 6,
tol=1.e-4,mter=30,1arge=.fal se., W =1, w =1, wb=0, wt =0
out (13) =1, tiout (13)=0.03,

out (30) =0, ti out (30) =2. d- 4,

out (31) =0, tiout(31)=0.01

out (32) =0, ti out (32) =0. 2,

out (33) =1, tiout(33)=1.d-4,

out (34) =0, ti out (34) =0. 001,

out (35) =0, ti out (35)=2.d-4,

out (36) =0, ti out (36)=0. 01,

out (37) =0, tiout (37)=0.001,

out (38) =0, ti out (38)=0.01,

out (39)=0,tiout(39)=1.d-1

out (40) =0, ti out (40)=0.1

gravc= 0.0d0

$

$fluid

mu=0. 00e0, gnil=.4, siep(1)=0.10, |anmbda=0.00,

coef 1=0. 0, coef 2=0. 0

$

$reg

nreg=1,

nvi =4,

xvi (1, 1) = 0.35d0, 0.650d0, 0.650d0, 0.350d0,

yvi (1,1)= 0.d0, 0.0dO, 20.0dO, 20.0dO,
xcenter=0.5, ycenter=5.0,

rix(1)=0.00d0, rex(1)=100.0dO,

riy(1l)=0.00d0, rey(1)=100.0dO,

nprg=1,

densir(1)=1.d-4,

ipath(1,1)=3,3,3,8,

matr (1, 1) =1. 58e6, 0. 30e0, 10. e25, 2. €25, 1. 0e25, 1. e2,0. €0
vrx(1)= 0. 0e0,

vry(1)= 0. 0e0,

vrx(2)= 0. 0e0,

vry(2)= 0.0e0

$

Notes on running this problem Quadratic interpolation for den-
sity of fluid nay cause problens at the interface. This one run with
regular MPM i npl enentation. Have to allow fluid particles to accu-
nmul ate strain as opposed to regular fluid where strain rate i s used
and accunul ation is not necessary. Hardwi re nmass of piston.

Box 12. First Input Filefor Piston-Container Problem
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1.0d-3 ldensity

2010. 0d0, 0. 0d0, 10. d25, 2. d25, 1. 0d25, 1. d2, 0. dO
3,3,3,8 lconstitutive equation

20 I nunber of particles in the sequence
20,1 I'total nunber of particles to read in;
0. 500000 39.500000 0.00 0.00 0.00 0.00
0. 500000 38.500000 0.00 0.00 0.00 0.00
0. 500000 37.500000 0.00 0.00 0.00 0.00
0. 500000 36.500000 0.00 0.00 0.00 0.00
0. 500000 35.500000 0.00 0.00 0.00 0.00
0. 500000 34.500000 0.00 0.00 0.00 0.00
0. 500000 33.500000 0.00 0.00 0.00 0.00
0. 500000 32.500000 0.00 0.00 0.00 0.00
0. 500000 31.500000 0.00 0.00 0.00 0.00
0. 500000 30.500000 0.00 0.00 0.00 0.00
0. 500000 29.500000 0.00 0.00 0.00 0.00
0. 500000 28.500000 0.00 0.00 0.00 0.00
0. 500000 27.500000 0.00 0.00 0.00 0.00
0. 500000 26.500000 0.00 0.00 0.00 0.00
0. 500000 25.500000 0.00 0.00 0.00 0.00
0. 500000 24.500000 0.00 0.00 0.00 0.00
0. 500000 23.500000 0.00 0.00 0.00 0.00
0. 500000 22.500000 0.00 0.00 0.00 0.00
0. 500000 21.500000 0.00 0.00 0.00 0.00
0. 500000 20.500000 0.00 -1.d0 0.00 0.00

OC0000000000000000000

no.
.00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

per cell

Box 13. Second I nput File for Piston-Container Problem
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A.4.11 Stability Test Problem (Section 8.5, page 141)

Trary"
""stability test problem™

$in

nx=6, ny=2, iprint=0, igen=0,

x| ef t =0. 00e0, xri ght =5. 00e0, ybot =0. 00e0, yt op=1. 00e0,
t max=0. 03, t st ep=0. 0010, dt max=0. 001,

tol =1.e-4, mter=30, w =0, w =0, wb=1, wt =1,

gr avc=000. 0dO

$

$fluid

nmu=0. 00e0

$

$regrig

$

$reg

$

1. 0dO ldensity

1. 0d6, 0. 00d0, 10. d25, 2. d25, 1. 0d25, 1. d2, 0. dO

3,3,3,0 I'constitutive equation

5

51

0.0001 0.5 0.00 0. 00 0. 00 0. 00 0. 00
1.0001 0.5 0.00 0. 00 0. 00 0. 00 0. 00
2.0001 0.5 1.d-8 0.00 0. 00 0. 00 0. 00
3.0001 0.5 0.00 0. 00 0. 00 0. 00 0. 00
4.0001 0.5 0.00 0. 00 0. 00 0. 00 0. 00

Box 14. Input Filesfor Stability Test Problem
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A.4.12 Two-Bar Impact (Section A.1.5, page 160)

ary"'
'"2 bars inpacting"
$in
nx=21, ny=21, iprint=0, igen=1

x| ef t =0. 00e0, xri ght =5. 000e0, ybot =- 0. 000e0, yt op=5. 00e0, cntr=1. 0,
t max=0. 501, t st ep=0. 0007e0, dt nax=0. 0007, t pl t =0. 5,
tol=1.e-4,mter=30,large=.false., W =1, w=1, wb=1, wt =1
out (13)=1,tiout(13)=0.1

out (30)=0, tiout(30)=1.d-1

out (31)=0, tiout(31)=1.d-1

out (32)=0, tiout(32)=1.d-1

out (33) =1, tiout (33)=0. 005,

out (34) =1, ti out (34)=0. 0025,

out (35) =0, ti out (35)=0. 0007,

out (36) =0, tiout(36)=0.01

out (37) =0, tiout(37)=2.5e-1,

out (40) =0, tiout (40)=0.1

met hd=0, gravc=0. 0

$

$fluid

$

$regrig

$

$reg

nreg=2,

nvi =4, 4,

xvi (1,1)=1.0, 2.25,2.25,1.0,

yvi (1, 1) =0. 25, 0. 25, 4. 75, 4. 75,

xvi (1,2)=2.75,4.0, 4.0, 2.75,

yvi (1, 2)=0. 25,0. 25, 4. 75, 4. 75,

xcenter=0.0,0.0, ycenter=0.0,0.0,

rix(1)=0.0d0, rex(1)=1.5e3,

riy(1)=0.0d0, rey(1l)=1.5e3,

rix(2)=0.0d0, rex(2)=1.5e3,

riy(2)=0.0d0, rey(2)=1.5e3,

nprg=4, 4,

densir(1)=1.0, 1.0,

i path(1,1)=3, 3,3, 2,

i path(1, 2)=3, 3,3, 2,

matr (1, 1) =1. e5, 0. 30e0, 10. e25, 2. e25, 1. 0e25, 1. e2, 0. €0,
matr (1, 2) =1. e5, 0. 30e0, 10. e25, 2. e25, 1. 0e25, 1. e2, 0. €0,
vrx(1)= 2.0e0,

vrx(2)= -0.0e0

$

Box 15. Input File 1 for Ball and Net Simulation

190



A.4.13 Ball and Net Simulation (Section A.1.6, page 164)

"ary
'""ball and net orig"
$in

nx=41, ny=41, iprint=0, igen=3,

x| ef t =0. 00e0, xri ght =10. 000e0, ybot =0. 00e0, yt op=10. 0e0, cntr =1. 0O,

t max=4. 02, t st ep=0. 001d0, dt max=0. 001dO0, t pl t =0. 5,

tol =1.e-4,nmter=30,1arge=. fal se.,w =0, w =1, wb=0, wt =0,

out (13)=1,tiout(13)=1.0,

out (31)=0,tiout(31)=1.d-1

out (32)=0,tiout(32)=1.d-1

out (33) =0, ti out (33) =0. 005,

out (34) =1, tiout (34)=0. 005,

out (37)=0,tiout(37)=2.5e-1

out (40) =0, tiout (40)=0. 1,

nmet hd=0, gravc=0. 0

$

$fluid

$

$regrig

$

$reg

nreg=1,

nvi =4,

xvi (1, 1) =0. Oe0, 10. 0e0, 10. 0e0, 0. 0eO,

yvi (1, 1) =0. 0e0, 0. 0e0, 10. 0e0, 10. 0e0,

xcent er =5. 625, ycenter=5.0,

rix(1)=0.0d0, rex(1)=1.5,

riy(1l)=0.0d0, rey(1)=1.5,

npr g=4,

densir(1)=1.e0,

i path(1,1)=3,3,3,2,

matr (1, 1) =1. e4, 0. 30e0, 10. e25, 2. e25, 1. 0e25, 1. e2, 0. €0,

vrx(1)= 1.0e0

$

Box 16. Input File 1 for Ball and Net Simulation
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A.4.14 Maple Calculations

Input to Maple

N 1:=N-dt/dx*( (vpmi+vppl) *(N-N'2) +vp* (2. *N'2-2. *N+1.) );
M1:=1.-dt/dx*( (vppl-vpnR)*(N-N‘2)+(vp-vpnl)*(3.*N'2-3. *N+1.) );
d:=N1/M1;

M pl:=1.-dt/dx*( (vpp2-vpnl)*(N-N'2) +(vppl-vp)*(3. *N'2-3. *N+1.) );
e:=(1.-N1)/M p1l;

f:=vpm2*(-d)*(1.-N+

vpml*( d*(2.-3.*N)-e*(1.-N) )+

vp*( d*(3.*N-1.)+e*(2.-3*N) ) +

vppl*( -d*N + e*(3.*N-1.) )+

vpp2*(-e)*N

vpn2: =0. 0;
vpni: =0. O;
vppl: =0. O;
vpp2: =0. 0;
simplify(f);
f H =subs(N=0. 5, ) ;
sinplify(fH);
f0: =subs(N=0. 0, ) ;
simplify(f0);
f1:=subs(N=1.0,f);
sinplify(fl);
Output from Maple
[\~ MAPLE V
Y | /| _. Copyright (c) 1981-1990 by the University of Waterl oo.
\ MAPLE / Al rights reserved. MAPLE is a registered trademark of
< > \Wterloo Maple Software.

| Type ? for help.
> read napl g

2 2
dt ((vpnl + vppl) (N- N) +vp (2. N - 2. N+ 1.))
N L i= N oo mmmm o
dx
2 2
dt ((vppl - vpn2) (N- N) + (vp - vpnl) (3. N 3. N+ 1.))
Y I R B e e
dx
2 2
dt ((vpnl + vppl) (N- N) +vp (2. N 2. N+ 1.))
N & = o m oo m o e m o e o e e e e e e eemeeeooo o
dx
[0 T
2 2
dt ((vppl - vpn2) (N- N) + (vp - vpnl) (3. N 3. N+ 1.))
I e
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%A

n .

9w .

%

dx

2

2
dt ((vpp2 - vpnl) (N- N) + (vppl - vp) (3. N - 3. N+ 1.))
Y ol A R L
dx
2
dt ((vprml + vppl) (N- N) +vp (2. N - 2. N+ 1.))
S N
dx
[ =T e e I

dt ((vpp2 - vpnl) (N- N) + (vppl - vp) (3. N - 3. N+ 1.))

%
/I(N- 9) (2. - 3. N (1. - N+9) (1. - N\
F VP | mm s m e e |
\ % %R /
I(N- 9) (3. N- 1.) (1. - N+9%) (2. - 3 N\
VP |- - F o |
\ % %R /
/' (N-9%) N (1. - N+ %) (3. N- 1.)\ vpp2 (1. - N+ 9%) N
+ vppl |- ---------- R LT LT P I LR R
\ % " / %"
2
= 3. N - 3. N+ 1L
2
dt ((vpp2 - vpnil) (N- N) + (vppl - vp) %)
= 1
dx
2 2
dt ((vpnl + vppl) (N- N) +vp (2. N - 2. N+ 1))
dx
2
dt ((vppl - vpn2) (N- N) + (vp - vprml) %)
= 1
dx
vpn2 := 0
vpnl := 0
vppl :=0
vpp2 := 0
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2 2 4 2 2 2 2 2 2
vp (6. dt vp N - 6. N dx +6. Ndx +dt vp - 2. dx + 2. Ndx dt vp

2 2 3 2 2 2 2 2 /
- 12. dt vp N +11. dt vp N -5 dt vp N- 1. dt vpdx) [/ (
/

2
(-1 dx +3. dt vp N - 3. dt vp N+ dt vp)

2
(dx + 3. dt vp N - 3. dt vp N+ dt vp))
/ dt vp dt vp\
| 5- .50 ----- .5+ .50 ----- |
| dx dx |
fH:=vp |.5 ------mmmma--- + .5 s |
| dt vp dt vp|
| 1. - .25 ----- 1. +.25 ----- |
\ dx dx /
2 2 2
vp ( - 4. dx +dt wvp)
R R
(- 4. dx +dt vp) (4. dx + dt vp)
/ dt vp \
fO:=vp |1 ------mmmmmmmaa-- + 2.
| / dt vp\ |
| x| Lo- Lo o
\ \ dax / /
vp (dt vp - 2. dx)
- 1. dx +dt vp
/ dt vp \
| 1.0- 1. ----- |
| dx dt vp |
fl:=vp |20 -------------- =10 - |
| dt vp / dt vp\|
| 1. -1 ----- dx |1. + 1. ----- [
\ dx \ dx //
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